OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23906–23915

An adjustable, high sensitivity, wide dynamic range two channel wave-front sensor based on moiré deflectometry

Saifollah Rasouli, M. Dashti, and Anamparambu. N. Ramaprakash  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23906-23915 (2010)
http://dx.doi.org/10.1364/OE.18.023906


View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An adjustable, high sensitivity, wide dynamic range two channel wave-front sensor based on moiré deflectometry has been constructed for measuring distortions of light wave-front transmitted through the atmosphere. In this approach, a slightly divergent laser beam is passed through the turbulent ground level atmosphere and then a beam-splitter divides it into two beams. The beams pass through a pair of moiré deflectometers which are installed parallel and close together. From deviations in the moiré fringes we calculate the two orthogonal components of angle of arrival at each location across the wave-front. The deviations have been deduced in successive frames which allows evolution of the wave-front shape to be determined. The dynamic range and sensitivity of detection are adjustable by merely changing the separation of the gratings and the angle between the rulings of the gratings in both of channels. The spatial resolution of the method is also adjustable by means of bright, dark, and virtual traces for given moiré fringes without paying a toll in the measurement precision.

© 2010 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.6760) Imaging systems : Talbot and self-imaging effects
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 24, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: September 7, 2010
Published: October 29, 2010

Citation
Saifollah Rasouli, Mohsen Dashti, and Anamparambu N. Ramaprakash, "An adjustable, high sensitivity, wide dynamic range two channel wave-front sensor based on moiré deflectometry," Opt. Express 18, 23906-23915 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lombardo, and G. Lombardo, “New methods and techniques for sensing the wave aberrations of human eyes,” Clin. Exp. Optom. 92, 176–186 (2009). [CrossRef] [PubMed]
  2. F. Roddier, Adaptive optics in astronomy (Cambridge University Press, Cambridge, United Kingdom, 1999). [CrossRef]
  3. R. V. Shack, and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  4. B. C. Platt, and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001). [PubMed]
  5. E. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  6. G. W. R. Leibbrandt, G. Harbers, and P. J. Kunst, “Wavefront analysis with high accuracy by use of a doublegrating lateral shearing interferometer,” Appl. Opt. 35, 6151–6161 (1996). [CrossRef] [PubMed]
  7. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982).
  8. R. Ragazzoni, and J. Farinato, “Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics,” Astron. Astrophys. 350, L23–L26 (1999).
  9. R. Legarda-Saenz, “Robust wavefront estimation using multiple directional derivatives in moiré deflectometry,” Opt. Lasers Eng. 45, 915–921 (2007). [CrossRef]
  10. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. 38, 974–982 (1999). [CrossRef]
  11. N. H. Salama, D. Patrignani, L. D. Pasquale, and E. E. Sicre, “Wavefront sensor using the Talbot effect,” Opt. Laser Technol. 31, 269–272 (1999). [CrossRef]
  12. Ch. Siegel, F. Loewenthal, and L. E. Balmer, “A wavefront sensor based on the fractional Talbot effect,” Opt. Commun. 194, 265–275 (2001). [CrossRef]
  13. R. Sekine, T. Shibuya, K. Ukai, S. Komatsu, M. Hattori, T. Mihashi, N. Nakazawa, and Y. Hirohara, “Measurement of wavefront aberration of human eye using Talbot image of two-dimensional grating,” Opt. Rev. 13, 207–211 (2006). [CrossRef]
  14. M. Rottenkolber, and H. Podbielska, “Measuring ophthalmologic surfaces by means of moir’e deflectometry,” Opt. Eng. 35, 1124–1133 (1996). [CrossRef]
  15. S. Rasouli, and M. T. Tavassoly, “Application of moiré technique to the measurement of the atmospheric turbulence parameters related to the angle of arrival fluctuations,” Opt. Lett. 31, 3276–3278 (2006). [CrossRef] [PubMed]
  16. S. Rasouli, and M. T. Tavassoly, “Moiré technique improves the measurement of atmospheric turbulence parameters,” SPIE Newsroom DOI 10.1117/2.1200702.0569, (2007), http://spie.org/documents/Newsroom/Imported/0569/0569-2007-02-20.pdf.
  17. S. Rasouli, and M. T. Tavassoly, “Application of the moiré deflectometry on divergent laser beam to the measurement of the angle of arrival fluctuations and the refractive index structure constant in the turbulent atmosphere,” Opt. Lett. 33, 980–982 (2008). [CrossRef] [PubMed]
  18. S. Rasouli, “Use of a moir’e deflectometer on a telescope for atmospheric turbulence measurements,” Opt. Lett. 35, 1470–1472 (2010). [CrossRef]
  19. S. Rasouli, and M. T. Tavassoly, “Measurement of the refractive-index structure constant, C2 n, and its profile in the ground level atmosphere by moir’e technique,” in Optics in Atmospheric Propagation and Adaptive Systems IX, A. Kohnle and K. Stein, ed., Proc. SPIE 6364, 63640G–1–11 (2006). [CrossRef]
  20. S. Rasouli, K. Madanipour, and M. T. Tavassoly, “Measurement of modulation transfer function of the atmosphere in the surface layer by moir’e technique,” in Optics in Atmospheric Propagation and Adaptive Systems IX, A. Kohnle, and K. Stein, ed., Proc. SPIE 6364, 63640K–1–10 (2006).
  21. S. Rasouli, and N. Anamparambu, Ramaprakash, H. K. Das, C. V. Rajarshi, Y. Rajabi, and M. Dashti, “Two channel wavefront sensor arrangement employing moir’e deflectometry,” in Optics in Atmospheric Propagation and Adaptive Systems XII, A. Kohnle, K. Stein, and J. D. Gonglewski, ed., Proc. SPIE 7476, 74760K–1–9 (2009).
  22. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980).
  23. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).
  24. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
  25. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (4217 KB)      QuickTime
» Media 2: MPG (12298 KB)      QuickTime
» Media 3: MPG (3418 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited