OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23916–23923

Microwave transmission through a metal capped array of holes in a metal sheet

Matthew P. Biginton, Alastair P. Hibbins, J. Roy Sambles, and Ian J. Youngs  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23916-23923 (2010)
http://dx.doi.org/10.1364/OE.18.023916


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The microwave response of a square array of “metal capped” holes in a metal sheet is explored both experimentally and numerically. Above each circular aperture are concentrically placed metallic discs, separated by a fraction of the wavelength, with discs having radii larger than the apertures. The volume bound by the overlap supports a family of resonances that mediate transmission with the fundamental resonant mode being a factor of ~2.3 lower in frequency than the bare aperture resonance.

© 2010 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(100.6890) Image processing : Three-dimensional image processing
(110.0110) Imaging systems : Imaging systems
(110.6880) Imaging systems : Three-dimensional image acquisition
(100.3175) Image processing : Interferometric imaging

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 4, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 3, 2010
Published: October 29, 2010

Citation
Matthew P. Biginton, Alastair P. Hibbins, J. Roy Sambles, and Ian J. Youngs, "Microwave transmission through a metal capped array of holes in a metal sheet," Opt. Express 18, 23916-23923 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Ngai, and A. P. Smolski, “Electromagnetic properties of metal space frame radomes for use in satellite communications earth stations,” Antennas and Propag. Society International Symposium, AP-S Digest, 3, 1956–1959, (1993)
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981). [CrossRef]
  4. E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981). [CrossRef]
  5. E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991). [CrossRef]
  6. R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984). [CrossRef]
  7. D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).
  8. M. Beruete, R. Marques, J. D. Baena, and M. Sorolla, “Resonace and cross polarisation effects in conventional and complementary split ring resonantors periodic screens” Antenna and Propag. Society International Symposium., 3A, 794–797, (2005)
  9. I. Tardy, C. H. Chan, and J. S. Yee, “Analysis of the Yee Frequency Selective Surface” Antenna and Prop. Society International Symposium, AP-S Digest, 1, 196–199, (1991)
  10. A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004). [CrossRef]
  11. D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994). [CrossRef]
  12. isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994). [CrossRef]
  13. R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991). [CrossRef]
  14. J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995). [CrossRef]
  15. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004). [CrossRef] [PubMed]
  16. N. Behdad, “A second-order band-pass frequency selective surface using non resonant sub wavelength periodic structures,” Microw. Opt. Technol. Lett. 50(6), 1639–1643 (2008). [CrossRef]
  17. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).
  18. B. A. Munk, Frequency Selective Surfaces Theory and Design, (John Wiley & Sons 2000)
  19. Nelco, California, USA.
  20. HFSS, Ansoft Corporation, Pittsburgh, PA, USA.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited