OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23948–23956

Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities

Hsuan Lin, Jhih-Hao Chen, Shih-Shing Chao, Ming-Cheng Lo, Sheng-Di Lin, and Wen-Hao Chang  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23948-23956 (2010)
http://dx.doi.org/10.1364/OE.18.023948


View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strong couplings between cavity modes in photonic molecules formed by two preselected nearly identical microdisk microcavities with embedded quantum dots are investigated. By continuously tuning the refractive index of one microdisk, clear anticrossings in the resonant peak energies associated with crossings in the peak linewidths can be observed. The coupling strengths are extracted by the coupled mode theory and analyzed by the model considering the effective potential confining the electromagnetic waves in the microcavities.

© 2010 OSA

OCIS Codes
(350.3950) Other areas of optics : Micro-optics
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 23, 2010
Manuscript Accepted: October 23, 2010
Published: October 29, 2010

Citation
Hsuan Lin, Jhih-Hao Chen, Shih-Shing Chao, Ming-Cheng Lo, Sheng-Di Lin, and Wen-Hao Chang, "Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities," Opt. Express 18, 23948-23956 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  2. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  4. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef] [PubMed]
  5. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single photon sources based on quantum dots in photonic crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]
  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  7. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999). [CrossRef]
  8. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010). [CrossRef]
  9. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006). [CrossRef]
  10. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998). [CrossRef]
  11. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010). [CrossRef] [PubMed]
  12. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  13. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77(3), 035108 (2008). [CrossRef]
  14. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Academic, 2007), pp. 170–173.
  15. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  16. S. V. Boriskina, “Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 32(11), 1557–1559 (2007). [CrossRef] [PubMed]
  17. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10(2), 343 (1993). [CrossRef]
  18. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited