OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23965–23972

All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength

Laurent-Daniel Haret, Xavier Checoury, Zheng Han, Philippe Boucaud, Sylvain Combrié, and Alfredo De Rossi  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23965-23972 (2010)
http://dx.doi.org/10.1364/OE.18.023965


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an all-silicon photodetector working at telecom wavelength. The device is a simple metal-semiconductor-metal detector fabricated on silicon-on-insulator. A two-dimensional photonic crystal nanocavity (Q = 60,000) is used to increase the response that arises from the linear and two-photon absorption of silicon. The responsivity of the detector is about 20 mA/W and its bandwidth is larger than 1 GHz.

© 2010 OSA

OCIS Codes
(230.5160) Optical devices : Photodetectors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 30, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 26, 2010
Published: November 1, 2010

Citation
Laurent-Daniel Haret, Xavier Checoury, Zheng Han, Philippe Boucaud, Sylvain Combrié, and Alfredo De Rossi, "All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength," Opt. Express 18, 23965-23972 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23965


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  2. M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002). [CrossRef]
  3. M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006). [CrossRef]
  4. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  5. L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007). [CrossRef] [PubMed]
  6. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  7. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007). [CrossRef]
  8. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005). [CrossRef]
  9. Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006). [CrossRef]
  10. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010). [CrossRef] [PubMed]
  11. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002). [CrossRef]
  12. J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009). [CrossRef]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008). [CrossRef]
  15. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010). [CrossRef]
  16. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010). [CrossRef]
  17. A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008). [CrossRef] [PubMed]
  18. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  19. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006). [CrossRef]
  20. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  22. X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007). [CrossRef]
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). [CrossRef]
  24. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  25. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited