OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24003–24011

Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper

Hsiu-Po Chuang and Chen-Bin Huang  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24003-24011 (2010)
http://dx.doi.org/10.1364/OE.18.024003


View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A spectral line-by-line pulse shaper is used to experimentally generate and deliver ~1 ps optical pulses of 31~124 GHz repetition-rates over 25.33 km single-mode fiber without dispersion-compensating fiber. The correlation of such delivery capability to temporal Talbot effect is experimentally demonstrated. Incorporating shaper periodic phase control, the repetition-rates of these ~1 ps optical pulses are further multiplied up to 496 GHz and delivered over 25.33 km single-mode fiber.

© 2010 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(320.0320) Ultrafast optics : Ultrafast optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 17, 2010
Revised Manuscript: October 19, 2010
Manuscript Accepted: October 20, 2010
Published: November 2, 2010

Citation
Hsiu-Po Chuang and Chen-Bin Huang, "Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper," Opt. Express 18, 24003-24011 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-24003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009). [CrossRef]
  2. F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010). [CrossRef]
  3. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003). [CrossRef]
  4. T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989). [CrossRef]
  5. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009). [CrossRef] [PubMed]
  6. C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000). [CrossRef]
  7. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001). [CrossRef]
  8. J. Azaña and S. Gupta, “Complete family of periodic Talbot filters for pulse repetition rate multiplication,” Opt. Express 14(10), 4270–4279 (2006). [CrossRef] [PubMed]
  9. D. Pudo and L. R. Chen, “Tunable passive all-optical pulse repetition rate multiplier using fiber Bragg gratings,” J. Lightwave Technol. 23(4), 1729–1733 (2005). [CrossRef]
  10. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, and J. Azaña, “4x100 GHz pulse train generation from a single wavelength 10 GHz mode-locked laser using superimposed fiber gratings and nonlinear conversion,” J. Lightwave Technol. 24, 2091–2099 (2006). [CrossRef]
  11. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train,” Opt. Express 15(19), 12102–12107 (2007). [CrossRef] [PubMed]
  12. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001). [CrossRef]
  13. P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010). [CrossRef]
  14. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16(3), 405–410 (1998). [CrossRef]
  15. G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005). [CrossRef]
  16. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  17. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  18. C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998). [CrossRef]
  19. Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005). [CrossRef] [PubMed]
  20. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005). [CrossRef] [PubMed]
  21. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  22. J. Ye, and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  23. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006). [CrossRef]
  24. C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]
  25. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005). [CrossRef] [PubMed]
  26. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007). [CrossRef] [PubMed]
  27. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008). [CrossRef] [PubMed]
  28. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007). [CrossRef]
  29. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007). [CrossRef] [PubMed]
  30. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007). [CrossRef]
  31. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007). [CrossRef] [PubMed]
  32. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009). [CrossRef]
  33. C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010). [CrossRef] [PubMed]
  34. D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009). [CrossRef]
  35. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010). [CrossRef]
  36. D. Duchesne, R. Morandotti, and J. Azaña, “Temporal Talbot phenomena in higher-order dispersive media,” J. Opt. Soc. Am. B 24(1), 113–125 (2007). [CrossRef]
  37. J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004). [CrossRef]
  38. L. Chantada, C. R. Fernández-Pousa, and C. Gómez-Reino, “Spectral analysis of the temporal self-imaging phenomenon in fiber dispersive lines,” J. Lightwave Technol. 24(5), 2015–2025 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited