OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24025–24036

Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays

P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. Hossein Mousavi, and G. Shvets  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24025-24036 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure, simulate, and analyze the optical transmission through arrays of Ag nanorod pairs and U-shaped nanostructures as a function of polarization and angle of incidence. The bianisotropic nature of the metamaterials is exhibited in data and in simulations, and we argue that the electric field rather than the magnetic field excites the low frequency “magnetic” mode. We also observe spatial dispersion in the form of frequency shifts as a function of incident angle which we attribute to coupling effects between neighboring structures. A simple model based upon coupled electromagnetic dipoles is found to provide a qualitative description for the main features observed in the spectra.

© 2010 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 6, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: October 19, 2010
Published: November 3, 2010

P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. Hossein Mousavi, and G. Shvets, "Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays," Opt. Express 18, 24025-24036 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005). [CrossRef] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  6. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007). [CrossRef]
  7. Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008). [CrossRef]
  8. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106(6), 1693–1698 (2009). [CrossRef] [PubMed]
  9. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009). [CrossRef]
  10. J. J. Hopfield and D. G. Thomas, “Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals,” Phys. Rev. 132(2), 563–572 (1963). [CrossRef]
  11. D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator material,” J. Appl. Phys. 100(2), 024507 (2006). [CrossRef]
  12. J. A. Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, 1990).
  13. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  14. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: The two dimensional equivalent of metamaterials,” Metamaterials (Amst.) 3(2), 100–112 (2009). [CrossRef]
  15. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  16. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008). [CrossRef] [PubMed]
  17. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  18. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008). [CrossRef] [PubMed]
  19. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, R. J. Phaneuf, G. Shvets, “Wood’s anomaly in arrays of highly anisotropic plasmonic antennas,” to be published. Here conservation of crystal momentum is used to derive the equation for the onset of diffraction fmj=famsinθ+(msinθ)2+(n2−sin2θ)(m2+j2)(n2−sin2θ) where a is the period of the array, fa = c/a, the incident angle θ is taken to be within the plane defined by k and the substrate normal, n is the index of refraction of the medium (1.00 for air and 1.46 for glass), and m and j are integers specifying the component of momentum transfer along the reciprocal lattice unit vectors along k∥ and perpendicular to k∥, respectively.
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  21. The simulation current plots (Figs. 3 and 4) show the currents in response to an exciting wave of frequency ω. If ω is chosen at or near one of the resonances the corresponding resonance dominates the response. However, the other nearby resonances also contributes to the observed field patterns. In addition the response has in-phase and out-of-phase components that depend both on the dissipation and ω. These factors cause small distortions in the current distribution from the ideal patterns expected from symmetry. The significant deviation seen in Fig. 3 (e, f) can be understood as a mode of coupled oscillators where the individual oscillators are driven out of phase; at the resonant frequency their motion will in general not be in phase.
  22. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadropole resonance in optical metamaterials,” Phys. Rev. B 78, 12101 (2008). [CrossRef]
  23. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007). [CrossRef]
  24. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited