OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24140–24151

Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain

Nina Meinzer, Matthias Ruther, Stefan Linden, Costas M. Soukoulis, Galina Khitrova, Joshua Hendrickson, Joshua D. Olitzky, Hyatt M. Gibbs, and Martin Wegener  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24140-24151 (2010)
http://dx.doi.org/10.1364/OE.18.024140


View Full Text Article

Enhanced HTML    Acrobat PDF (1883 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study arrays of silver split-ring resonators operating at around 1.5-µm wavelength coupled to an MBE-grown single 12.7-nm thin InGaAs quantum well separated only 4.8 nm from the wafer surface. The samples are held at liquid-helium temperature and are pumped by intense femtosecond optical pulses at 0.81-µm center wavelength in a pump-probe geometry. We observe much larger relative transmittance changes (up to about 8%) on the split-ring-resonator arrays as compared to the bare quantum well (not more than 1-2%). We also observe a much more rapid temporal decay component of the differential transmittance signal of 15 ps for the case of split-ring resonators coupled to the quantum well compared to the case of the bare quantum well, where we find about 0.7 ns. These observations are ascribed to the evanescent coupling of the split-ring resonators to the quantum-well gain. All experimental results are compared with a recently introduced analytical toy model that accounts for this evanescent coupling, leading to excellent overall qualitative agreement.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 30, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 22, 2010
Published: November 3, 2010

Citation
Nina Meinzer, Matthias Ruther, Stefan Linden, Costas M. Soukoulis, Galina Khitrova, Joshua Hendrickson, Joshua D. Olitzky, Hyatt M. Gibbs, and Martin Wegener, "Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain," Opt. Express 18, 24140-24151 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-24140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]
  3. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444(3-6), 101–202 (2007). [CrossRef]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  7. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-Index Metamaterials: Going Optical,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1106–1115 (2006). [CrossRef]
  8. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007). [CrossRef] [PubMed]
  9. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007). [CrossRef]
  10. M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98(177404), 1–4 (2007). [CrossRef]
  11. P. Kinsler and M. W. McCall, “Causality-based criteria for a negative refractive index must be used with care,” Phys. Rev. Lett. 101(16), 167401 (2008). [CrossRef] [PubMed]
  12. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  13. J. A. Gordon and R. W. Ziolkowski, “CNP optical metamaterials,” Opt. Express 16(9), 6692–6716 (2008). [CrossRef] [PubMed]
  14. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008). [CrossRef] [PubMed]
  15. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(241104), 1–4 (2009). [CrossRef]
  16. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  17. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  18. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multi-fold Enhancement of Quantum Dot Luminescence in a Plasmonic Metamaterial”, arXiv:1008.4770 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited