OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24264–24275

Resolving optical illumination distributions along an axially symmetric photodetecting fiber

Fabien Sorin, Guillaume Lestoquoy, Sylvain Danto, John D. Joannopoulos, and Yoel Fink  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24264-24275 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices exhibit a continuous translational symmetry which presents challenges to the extraction of spatially resolved information. Here, we overcome this seemingly fundamental limitation and achieve the detection and spatial localization of a single incident optical beam at sub-centimeter resolution, along a one-meter fiber section. Using an approach that breaks the axial symmetry through the constuction of a convex electrical potential along the fiber axis, we demonstrate the full reconstruction of an arbitrary rectangular optical wave profile. Finally, the localization of up to three points of illumination simultaneously incident on a photodetecting fiber is achieved.

© 2010 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(160.2290) Materials : Fiber materials

ToC Category:

Original Manuscript: September 20, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 22, 2010
Published: November 4, 2010

Virtual Issues
November 15, 2010 Spotlight on Optics

Fabien Sorin, Guillaume Lestoquoy, Sylvain Danto, John D. Joannopoulos, and Yoel Fink, "Resolving optical illumination distributions along an axially symmetric photodetecting fiber," Opt. Express 18, 24264-24275 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Yu, and S. Yin, Fiber Optic Sensors, (Marcel-Dekker, 2008).
  2. K. T. V. Grattan, and B. T. Meggitt, eds., Optical Fiber Sensor Technology, Fundamentals, (Kluwer Academic Publishers, Boston, 2000).
  3. A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10(8), 201 (1999). [CrossRef]
  4. A. Othonos, and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing, (Artech House, Boston, 1999).
  5. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976). [CrossRef] [PubMed]
  6. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20(6), 1060–1074 (1981). [CrossRef] [PubMed]
  7. A. H. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol. 1(3), 498–509 (1983). [CrossRef]
  8. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985). [CrossRef]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990). [CrossRef] [PubMed]
  10. C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996). [CrossRef]
  11. X. Bao, D. J. Webb, and D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19(2), 141 (1994). [CrossRef] [PubMed]
  12. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  13. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  14. B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007). [CrossRef]
  15. B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008). [CrossRef]
  16. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002). [CrossRef]
  17. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008). [CrossRef]
  18. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008). [CrossRef] [PubMed]
  19. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004). [CrossRef] [PubMed]
  20. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007). [CrossRef] [PubMed]
  21. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006). [CrossRef]
  22. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007). [CrossRef]
  23. A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006). [CrossRef] [PubMed]
  24. F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009). [CrossRef] [PubMed]
  25. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010). [CrossRef] [PubMed]
  26. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005). [CrossRef]
  27. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006). [CrossRef]
  28. E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982). [CrossRef]
  29. N. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Multimaterial Fiber Diodes via in situ Compound Synthesis,” (manuscript under review).
  30. E. Rosencher, and B. Vinter, Optoelectronics, (Cambridge University Press, New York, 2002).
  31. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. (John Wiley, New York, 2001).
  32. R. H. Kingston, Detection of Optical and Infrared Radiation, (Springer-Verlag, Berlin, New York, 1978).
  33. Z. U. Borisova, Glassy Semiconductors, (Plenum Press, New York,1981).
  34. S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010). [CrossRef] [PubMed]
  35. D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited