OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24434–24440

Energy efficient chalcogenide waveguide Raman laser for optical interconnect

Ying Huang, Ping Shum, Feng Luan, and Ming Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24434-24440 (2010)
http://dx.doi.org/10.1364/OE.18.024434


View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and theoretically demonstrate that chalcogenide (As2Se3) waveguide is a more energy efficient platform for Raman amplification and lasing than silicon for optical interconnect applications. In spite of its smaller Raman gain, ultrahigh maximum conversion efficiency of 40%, seven times better than that of silicon Raman laser, is obtained. 33% lasing threshold reduction to 299mW is simultaneously observed, together with wider linear region. A figure-of-merit (FOM) factor has been established for direct comparison between As2Se3 and silicon waveguide Raman laser. It is found that As2Se3 is superior in terms of energy consumption and device miniaturization capability. Further threshold reduction to 100mW is achieved by optimizing Stokes end-facet reflectivity.

© 2010 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 30, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 12, 2010
Published: November 9, 2010

Citation
Ying Huang, Ping Shum, Feng Luan, and Ming Tang, "Energy efficient chalcogenide waveguide 
Raman laser for optical interconnect," Opt. Express 18, 24434-24440 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-23-5703 . [CrossRef] [PubMed]
  2. A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006). [CrossRef]
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  4. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-15-15-9205 . [CrossRef] [PubMed]
  5. V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-22-10371 . [CrossRef] [PubMed]
  6. F. Luan, M. D. Pelusi, M. R. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-17-5-3514 . [CrossRef] [PubMed]
  7. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006). [CrossRef]
  8. RR. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146 (2004). [CrossRef]
  9. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-22-18524 . [CrossRef] [PubMed]
  10. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-24-11702 . [CrossRef] [PubMed]
  11. P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11(24), 3248–3253 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-24-3248 . [CrossRef] [PubMed]
  12. N. Ponnampalam, R. Decorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12(25), 6270–6277 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-25-6270 . [CrossRef] [PubMed]
  13. Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010). [CrossRef]
  14. S. Madden, A. Prasad, R. Wang, D. Bulla, and B. Luther-Davies, “Highly nonlinear Ge11.5As24Se64.5 chalcogenide glass waveguides” 2009 35th European Conference on Optical Communication (ECOC), art. no. 5287363.
  15. J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000). [CrossRef]
  16. K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-21-8634 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited