OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24504–24509

1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Xin Wang, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24504-24509 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a 1x4 reconfigurable demultiplexing filter based on cascaded thermally tunable silicon racetrack resonators with ultralow tuning powers. The use of free-standing silicon resonators with undercut structures significantly reduces the tuning power, with a figure of ~2.9 mW per free spectral range. Even with the presence of thermal crosstalk between two adjacent resonators, we demonstrate multiplexing functionality for channel spacings of 200 GHz, 100 GHz, and 50 GHz, with channel wavelengths aligned to International Telecommunication Union (ITU) grid specifications. Crosstalk values for 200 GHz and 50 GHz channel spacings are less than −20 dB and −11.5 dB, respectively. The total power to achieve this performance is in the range of 1.84 mW to 2.4 mW. Such low-power, compact, and reconfigurable filters are particularly useful in chip-scale optical interconnects.

© 2010 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

Original Manuscript: September 14, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 28, 2010
Published: November 9, 2010

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Xin Wang, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, "1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators," Opt. Express 18, 24504-24509 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 6–15 (2006).
  3. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  6. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]
  7. J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009). [CrossRef]
  8. A. Batten, J. Joshi, A. Orcutt, B. Khilo, C. Moss, W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-more processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009). [CrossRef]
  9. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).
  10. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008). [CrossRef]
  11. F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009). [CrossRef]
  12. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004). [CrossRef]
  13. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  14. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]
  15. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]
  16. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.
  17. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]
  18. D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” Proc. ECIO, pp. 395–398 (2003).
  19. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2009), pp. 1 – 2.
  20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).
  21. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  22. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, “Eleven-channel Second-order silicon microring-resonator filterbank with tunable channel spacing,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/QELS 2010), paper CMS5.
  23. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CThJ3.
  24. Q. Xu, “Silicon modulator based on coupled microring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (OSA 2010), paper IWA3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited