OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24595–24610

FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography

Haogang Zhu, David P. Crabb, Patricio G. Schlottmann, Tuan Ho, and David F. Garway-Heath  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24595-24610 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1618 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral-domain optical coherence tomography (SD-OCT) provides volumetric images of retinal structures with unprecedented detail. Accurate segmentation algorithms and feature quantification in these images, however, are needed to realize the full potential of SD-OCT. The fully automated segmentation algorithm, FloatingCanvas, serves this purpose and performs a volumetric segmentation of retinal tissue layers in three-dimensional image volume acquired around the optic nerve head without requiring any pre-processing. The reconstructed layers are analyzed to extract features such as blood vessels and retinal nerve fibre layer thickness. Findings from images obtained with the RTVue-100 SD-OCT (Optovue, Fremont, CA, USA) indicate that FloatingCanvas is computationally efficient and is robust to the noise and low contrast in the images. The FloatingCanvas segmentation demonstrated good agreement with the human manual grading. The retinal nerve fibre layer thickness maps obtained with this method are clinically realistic and highly reproducible compared with time-domain StratusOCTTM.

© 2010 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 30, 2010
Revised Manuscript: October 7, 2010
Manuscript Accepted: October 10, 2010
Published: November 10, 2010

Haogang Zhu, David P. Crabb, Patricio G. Schlottmann, Tuan Ho, and David F. Garway-Heath, "FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography," Opt. Express 18, 24595-24610 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. E. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007). [CrossRef]
  3. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995). [PubMed]
  4. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995). [PubMed]
  5. P. Carpineto, M. Ciancaglini, E. Zuppardi, G. Falconio, E. Doronzo, and L. Mastropasqua, “Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes,” Ophthalmology 110(1), 190–195 (2003). [CrossRef] [PubMed]
  6. R. R. Bourne, F. A. Medeiros, C. Bowd, K. Jahanbakhsh, L. M. Zangwill, and R. N. Weinreb, “Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 46(4), 1280–1285 (2005). [CrossRef] [PubMed]
  7. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003). [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  9. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  10. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004). [CrossRef] [PubMed]
  11. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  12. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  13. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005). [CrossRef] [PubMed]
  14. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  15. C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008). [CrossRef]
  16. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009). [CrossRef] [PubMed]
  17. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  18. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001). [CrossRef] [PubMed]
  19. M. Haeker, M. Sonka, R. Kardon, V. A. Shah, X. Wu, and M Abramoff, “Automated segmentation of intraretinal layers from macular optical coherence tomography images,” Proc. SPIE 6512, 651214 (2007). [CrossRef]
  20. M. Niemeijer, M. Garvin, B. v. Ginneken, M. Sonka, and M. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE, 6914, 69141R8 (2008).
  21. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef]
  22. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  23. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  24. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010). [CrossRef] [PubMed]
  25. K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abramoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging 29(1), 159–168 (2010). [CrossRef]
  26. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010). [CrossRef] [PubMed]
  27. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  28. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006). [CrossRef] [PubMed]
  29. C. K. I. Williams, “Regression with Gaussian Processes,” in Mathematics of Neural Networks: Models, Algorithms and Applications, (Kluwer, 1995)
  30. G. Golub and W. Kahan, “Calculating the singular value and pseudo-inverse of a matrix,” SIAM Numerical Analysis 63, 205–224 (1965).
  31. D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008). [CrossRef] [PubMed]
  32. D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009). [CrossRef] [PubMed]
  33. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005). [CrossRef] [PubMed]
  34. T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009). [CrossRef] [PubMed]
  35. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medical Image Computing and Computer-Assisted Intervention 130–137 (1998).
  36. N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated analysis of normal and glaucomatous optic nerve head topography images,” Invest. Ophthalmol. Vis. Sci. 41(7), 1730–1742 (2000). [PubMed]
  37. D. Li, D. Winfield, and D. J. Parkhurst, “Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches,” in IEEE Vision for Human-Computer Interaction Workshop at CVPR, 2005), 1–8.
  38. D. L. Budenz, R. T. Chang, X. Huang, R. W. Knighton, and J. M. Tielsch, “Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes,” Invest. Ophthalmol. Vis. Sci. 46(7), 2440–2443 (2005). [CrossRef] [PubMed]
  39. J. S. Kim, H. Ishikawa, K. R. Sung, J. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol. 93(8), 1057–1063 (2009). [CrossRef] [PubMed]
  40. J. C. Mwanza, R. T. Chang, D. L. Budenz, M. K. Durbin, M. G. Gendy, W. Shi, and W. J. Feuer, “Reproducibility of Peripapillary Retinal Nerve Fiber Layer Thickness and Optic Nerve Head Parameters Measured with CirrusTM HD-OCT in Glaucomatous Eyes,” Invest. Ophthalmol. Vis. Sci., iovs.10–5222 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited