OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24632–24647

Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation

Anna Mazhorova, Jian Feng Gu, Alexandre Dupuis, Marco Peccianti, Ozaki Tsuneyuki, Roberto Morandotti, Hiroaki Minamide, Ming Tang, Yuye Wang, Hiromasa Ito, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24632-24647 (2010)
http://dx.doi.org/10.1364/OE.18.024632


View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films. Transmission through metamaterial films is studied in the whole THz range (0.1-20 THz) using a combination of FTIR and TDS. Metal containing metamaterials are found to have strong polarizing properties, while semiconductor containing materials are polarization independent and could have a designable high refractive index. Using the transfer matrix theory, we show how to retrieve the complex polarization dependent refractive index of the composite films. Finally, we study challenges in the fabrication of metamaterials with sub-micrometer metallic wires by repeated stack-and-draw process by comparing samples made using 2, 3 and 4 consecutive drawings. When using metallic alloys we observe phase separation effects and nano-grids formation on small metallic wires.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 29, 2010
Manuscript Accepted: November 2, 2010
Published: November 10, 2010

Citation
Anna Mazhorova, Jian Feng Gu, Alexandre Dupuis, Marco Peccianti, Ozaki Tsuneyuki, Roberto Morandotti, Hiroaki Minamide, Ming Tang, Yuye Wang, Hiromasa Ito, and Maksim Skorobogatiy, "Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation," Opt. Express 18, 24632-24647 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009). [CrossRef] [PubMed]
  2. R. Yahiaoui, H. Nemec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541 (2009). [CrossRef] [PubMed]
  3. W. Cai, and V. Shalaev, Optical metamaterials. fundamentals and applications (Springer, 2010)
  4. C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39(7), 1277–1294 (2006). [CrossRef]
  5. S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010). [CrossRef]
  6. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010). [CrossRef]
  7. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008). [CrossRef]
  8. K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010). [CrossRef]
  9. Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4785 . [CrossRef] [PubMed]
  10. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010). [CrossRef]
  11. T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003). [CrossRef]
  12. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997). [CrossRef]
  13. A. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys., A Mater. Sci. Process. 70(4), 365–376 (2000). [CrossRef]
  14. X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008). [CrossRef]
  15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010). [CrossRef]
  16. A. Mazhorova, J. F. Gu, S. Gorgutsa, M. Peccianti, T. Ozaki, R. Morandotti, M. Tang, H. Minamide, H. Ito, and M. Skorobogatiy, “THz metamaterials using aligned metallic or semiconductor nanowires” We-P.31, Proceedings of IEEE34th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2010.
  17. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008). [CrossRef] [PubMed]
  18. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010). [CrossRef] [PubMed]
  19. M. Skorobogatiy, and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University Press, 2009)
  20. M. Born, and E. Wolf, Principles of optics (Cambridge University Press, 7th edition, 1999)
  21. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002). [CrossRef] [PubMed]
  22. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express 16(10), 7382–7396 (2008). [CrossRef] [PubMed]
  23. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).
  24. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  25. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002). [CrossRef]
  26. P. Markoš and C. M. Soukoulis, “Absorption losses in periodic arrays of thin metallic wires,” Opt. Lett. 28(10), 846 (2003). [CrossRef] [PubMed]
  27. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001). [CrossRef]
  28. A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007). [CrossRef]
  29. K. Aydin, K. Guven, N. Katsarakis, C. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12(24), 5896–5901 (2004). [CrossRef] [PubMed]
  30. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009). [CrossRef]
  31. N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001). [CrossRef]
  32. J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009). [CrossRef]
  33. S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009). [CrossRef]
  34. L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963). [CrossRef]
  35. W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960). [CrossRef]
  36. V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005). [CrossRef]
  37. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009). [CrossRef]
  38. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006). [CrossRef]
  39. M. G. Silveirinha, ““Nonlocal Homogenization Model for a Periodic Array of ε-Negative Rods,” Phys. Rev. E - Statistical,” Nonlinear Soft Matt. Phys. 73(4), 046612 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited