OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24654–24660

A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24654-24660 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral response of a Bragg grating reflector inscribed in a microstructured optical fibre is tuned by employing an infiltrated ferrofluid, while modifying the overlap of the ferrofluidic medium with the grating length. Significant spectral changes in terms of Bragg grating wavelength shift and extinction ratio were obtained under static magnetic field actuation. Spectral measurements revealed non-bidirectional propagation effects dependent upon the relative position between the ferrofluid and the grating. The actuation speed of the device was measured to be of the order of few seconds.

© 2010 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3810) Optical devices : Magneto-optic systems
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 13, 2010
Revised Manuscript: October 12, 2010
Manuscript Accepted: October 15, 2010
Published: November 10, 2010

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, "A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid," Opt. Express 18, 24654-24660 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. St. J. Philip, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  4. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 . [CrossRef] [PubMed]
  6. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 . [CrossRef] [PubMed]
  7. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 . [CrossRef] [PubMed]
  8. A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured Fibre Bragg Gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009). [CrossRef]
  9. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009). [CrossRef] [PubMed]
  10. L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, “On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers,” Opt. Lett. 34(24), 3818–3820 (2009). [CrossRef] [PubMed]
  11. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008). [CrossRef] [PubMed]
  12. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009). [CrossRef]
  13. R. E. Rosenweig, “Ferrohydrodynamics,” (Dover, New York 1997)
  14. C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005). [CrossRef]
  15. H. E. Horng, J. J. Chieh, Y. H. Chao, and S. Y. Yang, “Designing optical-fibre modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005). [CrossRef] [PubMed]
  16. B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004). [CrossRef]
  17. H. Labidi, J.-J. Guerin, V. Girardon, X. Bonnet, C. Simonneau, R. Boucenna, C. de Barros, N. Daley, and I. Riant, “Dynamic gain control of optical amplifier using an all-fibre solution” 28th European Conference on Optical Communication ECOC, PD1.8, page 1–2, Vol 5, Copenhagen, 8–12 Sept. 2002B.B.
  18. A. Candiani, M. Konstantaki, S. Pissadakis, “Magnetic Tuning of Optical Fibre Long Period Gratings,” CLEO-Europe 2009, CH4.2.
  19. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  20. S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009). [CrossRef]
  21. H. Schwerdt, “Application of ferrofluid as a valve/pump for polycarbonate microfluidic devices,” NSF summer thesis, Johns Hopkins University (2006) http://www.seas.upenn.edu/~sunfest/pastProjects/Papers06/Schwerdt.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited