OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24688–24698

Optical breakdown in transparent media with adjustable axial length and location

Ilya Toytman, Dmitri Simanovski, and Daniel Palanker  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24688-24698 (2010)
http://dx.doi.org/10.1364/OE.18.024688


View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a highly elongated (aspect ratio over 500:1) optical breakdown in water produced by a single pulse of a picosecond laser focused with a combination of an axicon and a lens. Locations of the proximal and distal ends of the breakdown region can be adjusted by modifying radial intensity distribution of the incident beam with an amplitude mask. Using Fresnel diffraction theory we derive a transmission profile of the amplitude mask to create a uniform axial intensity distribution in the breakdown zone. Experimentally observed dynamics of the bubbles obtained with the designed mask is in agreement with the theoretical model. A system producing an adjustable cylindrical breakdown can be applied to fast linear or planar dissection of transparent materials. It might be useful for ophthalmic surgical applications including cataract surgery and crystalline lens softening.

© 2010 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 20, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: November 1, 2010
Published: November 10, 2010

Citation
Ilya Toytman, Dmitri Simanovski, and Daniel Palanker, "Optical breakdown in transparent media with adjustable axial length and location," Opt. Express 18, 24688-24698 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24688


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009). [CrossRef] [PubMed]
  2. S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009). [CrossRef] [PubMed]
  3. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002). [CrossRef] [PubMed]
  4. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26(11), 819–821 (2001). [CrossRef]
  5. Z. Nagy, J. F. Doane, D. S. Durrie, M. C. Kraff, R. L. Lindstrom, S. G. Slade, and R. F. Steinert, “Use of the femtosecond laser system in cataract surgery” presented at the American Academy of Ophthalmology Annual Meeting, San Francisco, CA, USA, 24–27 October 2009.
  6. J. Durnin, “Exact solutions for nondiffracting beams. I. Scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  7. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44, 592–592 (1954). [CrossRef]
  8. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007). [CrossRef]
  9. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006). [CrossRef]
  10. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008). [PubMed]
  11. T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009). [CrossRef] [PubMed]
  12. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010). [CrossRef] [PubMed]
  13. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  14. Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007). [CrossRef]
  15. S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007). [CrossRef]
  16. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989). [CrossRef] [PubMed]
  17. A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry-Perot resonator,” J. Opt. Soc. Am. A 9, 282–286 (1992). [CrossRef]
  18. M. Born, and E. Wolf, Principles of Optics (Pergamon, 1970).
  19. K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005). [CrossRef]
  20. P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008). [CrossRef]
  21. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010). [CrossRef] [PubMed]
  22. W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010). [CrossRef]
  23. E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  25. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008). [CrossRef] [PubMed]
  26. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996). [CrossRef]
  27. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997). [CrossRef]
  28. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999). [CrossRef]
  29. H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007). [CrossRef] [PubMed]
  30. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996). [CrossRef]
  31. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]
  32. S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008). [CrossRef]
  33. R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002). [CrossRef] [PubMed]
  34. G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005). [CrossRef] [PubMed]
  35. C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited