OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24735–24744

A multi-layer electro-optic field probe

Dong-Joon Lee, Jae-Yong Kwon, Han-Young Ryu, and John F. Whitaker  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24735-24744 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1466 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel design method and sensing scheme for an electro-optic field probe using multi-stratified layers of electro-optic wafers. A serial stack of cascaded layers is found to be capable of enhancing the performance of interferometric electro-optic light modulation that utilizes the slopes of interference fringe patterns and field-induced electro-optic phase retardations within wafers. The absolute sensitivity of the probe is also characterized with a micro-TEM cell that generates electric fields distributions with accurate, calculable strength for use in probe calibration. The sensitivity of a multi-layered probe-per unit electro-optic wafer volume - was enhanced by 6 dB compared to that of a single-layer one.

© 2010 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(350.4010) Other areas of optics : Microwaves
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:

Original Manuscript: July 29, 2010
Revised Manuscript: October 7, 2010
Manuscript Accepted: October 10, 2010
Published: November 11, 2010

Dong-Joon Lee, Jae-Yong Kwon, Han-Young Ryu, and John F. Whitaker, "A multi-layer electro-optic field probe," Opt. Express 18, 24735-24744 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998). [CrossRef]
  2. J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993). [CrossRef]
  3. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009). [CrossRef]
  4. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000). [CrossRef]
  5. D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008). [CrossRef]
  6. D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008). [CrossRef] [PubMed]
  7. O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005). [CrossRef]
  8. D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993). [CrossRef]
  9. A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997). [CrossRef]
  10. P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999). [CrossRef]
  11. S. M. Chandani, “Fiber-Based Probe for Electrooptic Sampling,” IEEE Photon. Technol. Lett. 18(12), 1290–1292 (2006). [CrossRef]
  12. A. B. Buckman, “Effective electro-optic coefficient of multilayer dielectric waveguides modulation enhancement,” J. Opt. Soc. Am. 66(1), 30–33 (1976). [CrossRef]
  13. D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009). [CrossRef]
  14. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21, 1948–1952 (2004). [CrossRef]
  15. A. Yariv, and P. Yeh, Optical Waves in Crystals. (New York: Wiley, 1984), chap. 8.
  16. M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16(4), 189–195 (1974). [CrossRef]
  17. N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009). [CrossRef]
  18. D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010). [CrossRef]
  19. C. C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18(12), 12239–12248 (2010). [CrossRef] [PubMed]
  20. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited