OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24753–24761

Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating

Chang-sub Park, Yeonjeong Han, Kyung-Il Joo, Yong Wook Lee, Shin-Won Kang, and Hak-Rin Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24753-24761 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a novel selective chemical sensing approach by incorporating a poly(dimethylsiloxane) (PDMS)-coated fiber Bragg grating (FBG) structure for optically detecting various volatile organic compounds (VOC’s). When the proposed structure is exposed to a nonpolar solvent, a tensile stress is induced between the coated PDMS and the optical fiber by a VOC-dependent swelling effect of the PDMS, which results in a Bragg wavelength shift dependent on the concentration and the type of VOC’s. Because of no need of an etching process of a fiber cladding, the proposed PDMS-coated FBG can be used as a simple, convenient, and durable chemical sensing element with a high sensitivity, compared with conventional FBG sensors requiring an evanescent wave coupling.

© 2010 OSA

OCIS Codes
(160.5470) Materials : Polymers
(230.3990) Optical devices : Micro-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: August 22, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 31, 2010
Published: November 11, 2010

Chang-sub Park, Yeonjeong Han, Kyung-Il Joo, Yong Wook Lee, Shin-Won Kang, and Hak-Rin Kim, "Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating," Opt. Express 18, 24753-24761 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  2. A. Othonos, and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, (Boston: Artech House, 1999).
  3. Y. J. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999). [CrossRef]
  4. L. Zhang, W. Zhang, and I. Bennion, “In-fiber graing optic sensors” in Fiber Optics Sensors (New York: Dekker, Chaper 4, 2002).
  5. X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003). [CrossRef]
  6. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  7. X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999). [CrossRef]
  8. X. Shu, X. L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002). [CrossRef]
  9. J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010). [CrossRef]
  10. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
  11. K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
  12. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001). [CrossRef]
  13. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004). [CrossRef]
  14. R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
  15. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  16. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005). [CrossRef]
  17. D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009). [CrossRef] [PubMed]
  18. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003). [CrossRef] [PubMed]
  19. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990). [CrossRef]
  20. J. Hildebrand, and R. L. Scott, The solubility of Nonelectrolytes, (New York: Reinhold, 1950).
  21. C. M. Hansen, Hasen solubility parameter: a user’s hand book, (Florida: CRC Press 2000).
  22. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005). [CrossRef]
  23. T. Young, and D. Hugh, University Physics, (7th Ed., Addison Wesley, 1992).
  24. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991). [CrossRef]
  25. F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).
  26. D. Armani, C. Liu, and N. Aluru, “Re-configurable Fluid Circuits by PDMS Elastomer Micromachining,” Proc. IEEE Int. Conf. Micro-Electro Mech. Syst. (17–21 January 1999), pp. 222–227.
  27. J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008). [CrossRef]
  28. A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008). [CrossRef]
  29. H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: JPG (2891 KB)     
» Media 2: JPG (1645 KB)     
» Media 3: JPG (334 KB)     
» Media 4: JPG (1711 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited