OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24793–24808

Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

Anusha Pokhriyal, Meng Lu, Vikram Chaudhery, Cheng-Sheng Huang, Stephen Schulz, and Brian T. Cunningham  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24793-24808 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate.

© 2010 OSA

OCIS Codes
(110.3960) Imaging systems : Microlithography
(180.2520) Microscopy : Fluorescence microscopy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 6, 2010
Revised Manuscript: November 5, 2010
Manuscript Accepted: November 6, 2010
Published: November 11, 2010

Anusha Pokhriyal, Meng Lu, Vikram Chaudhery, Cheng-Sheng Huang, Stephen Schulz, and Brian T. Cunningham, "Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection," Opt. Express 18, 24793-24808 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.
  2. J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed. (J. Biomed. Opt., 2008), Vol. 13.
  3. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001). [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005). [CrossRef] [PubMed]
  5. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008). [CrossRef] [PubMed]
  6. P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999). [CrossRef] [PubMed]
  7. R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010). [CrossRef] [PubMed]
  8. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007). [CrossRef]
  9. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010). [CrossRef] [PubMed]
  10. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009). [CrossRef]
  11. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008). [CrossRef] [PubMed]
  12. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001). [CrossRef] [PubMed]
  13. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  14. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  15. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  16. H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009). [CrossRef]
  17. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970). [CrossRef]
  18. E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004). [CrossRef] [PubMed]
  19. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003). [CrossRef] [PubMed]
  20. C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002). [CrossRef]
  21. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005). [CrossRef] [PubMed]
  22. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]
  23. B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006). [CrossRef] [PubMed]
  24. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998). [CrossRef]
  25. H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004). [CrossRef]
  26. D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003). [CrossRef] [PubMed]
  27. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008). [CrossRef]
  28. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009). [CrossRef]
  29. I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007). [CrossRef]
  30. K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003). [CrossRef]
  31. M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001). [CrossRef] [PubMed]
  32. S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004). [CrossRef] [PubMed]
  33. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010). [CrossRef]
  34. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005). [CrossRef] [PubMed]
  35. G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007). [CrossRef] [PubMed]
  36. F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).
  37. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995). [CrossRef]
  39. C. M. S. Torres, ed., Alternative Lithography, 1 ed., Nanostructure Science and Technology (Springer, 2003), p. 425.
  40. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997). [CrossRef]
  41. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010). [CrossRef] [PubMed]
  42. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008). [CrossRef] [PubMed]
  43. M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning,” in Proc. SPIE, 1999), 379–389.
  44. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999). [CrossRef]
  45. D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003). [CrossRef]
  46. W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002). [CrossRef]
  47. D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003). [CrossRef]
  48. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009). [CrossRef] [PubMed]
  49. V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010). [PubMed]
  50. V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited