OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24809–24824

Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24809-24824 (2010)
http://dx.doi.org/10.1364/OE.18.024809


View Full Text Article

Enhanced HTML    Acrobat PDF (7210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced self-organization of regular nanoscale layered patterns in fused silica is investigated using spectroscopy and microscopy methods, revealing a high presence of stable broken oxygen bonds. Longitudinal traces are then generated by replicating static irradiation structures where the nanoscale modulation can cover partially or completely the photoinscribed traces. The resulting birefringence, the observed anisotropic light scattering properties, and the capacity to write and erase modulated patterns can be used in designing bulk polarization sensitive devices. Various laser-induced structures with optical properties combining guiding, scattering, and polarization sensitivity are reported. The attached polarization functions were evaluated as a function of the fill factor of the nanostructured domains. The polarization sensitivity allows particular light propagation and confinement properties in three dimensional structures.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6030) Materials : Silica
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 19, 2010
Revised Manuscript: September 18, 2010
Manuscript Accepted: September 20, 2010
Published: November 12, 2010

Citation
K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, "Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica," Opt. Express 18, 24809-24824 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008). [CrossRef]
  2. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008). [CrossRef]
  3. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16, 1517–1522 (2008). [CrossRef] [PubMed]
  4. . V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006). [CrossRef]
  5. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16, 20029–20037 (2008). [CrossRef] [PubMed]
  6. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002). [CrossRef]
  7. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006). [CrossRef] [PubMed]
  8. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef] [PubMed]
  10. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004). [CrossRef] [PubMed]
  11. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009). [CrossRef]
  12. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006). [CrossRef]
  13. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007). [CrossRef]
  14. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008). [CrossRef] [PubMed]
  15. . C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008). [CrossRef]
  16. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004). [CrossRef]
  17. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999). [CrossRef]
  18. B. Poumellec, and M. Lancry, “Damage thresholds in femtosecond laser processing of silica based materials,” Proc. 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, ed., J. Canning (2006).
  19. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24, 1627–1632 (2007). [CrossRef]
  20. . A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009). [CrossRef]
  21. . S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006). [CrossRef]
  22. . I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007). [CrossRef]
  23. . A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005). [CrossRef]
  24. . C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005). [CrossRef]
  25. W. Watanabe, and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10, 603–608 (2002). [PubMed]
  26. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007). [CrossRef] [PubMed]
  27. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005). [CrossRef] [PubMed]
  28. . E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005). [CrossRef]
  29. . J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008). [CrossRef]
  30. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999). [CrossRef]
  31. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). [CrossRef]
  32. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16, 13979–13989 (2008). [CrossRef] [PubMed]
  33. . G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009). [CrossRef]
  34. D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998). [CrossRef]
  35. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009). [CrossRef] [PubMed]
  36. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008). [CrossRef]
  37. . A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006). [CrossRef]
  38. N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).
  39. . M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).
  40. . J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008). [CrossRef]
  41. D. Little, “Glass modification in femtosecond laser written waveguides and the effect of laser polarisation,” PhD Thesis, Macquarie University (2010).
  42. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef] [PubMed]
  43. Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for Analysis of Tilted Fiber Gratings,” J. Lightwave Technol. 19, 1580–1591 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited