OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24859–24867

Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films

Xuefeng Wang, Kuo-ping Chen, Ming Zhao, and David D. Nolte  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24859-24867 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using high-speed picometrology, the complete cluster-to-film dielectric trajectories of ultra-thin gold films on silica are measured at 488 nm and 532 nm wavelengths for increasing mass-equivalent thickness from 0.2 nm to 10 nm. The trajectories are parametric curves on the complex dielectric plane that consist of three distinct regimes with two turning points. The thinnest regime (0.2 nm – 0.6 nm) exhibits increasing dipole density up to the turning point for the real part of the dielectric function at which the clusters begin to acquire metallic character. The mid-thickness regime (0.6 nm ~2 nm) shows a linear trajectory approaching the turning point for the imaginary part of the dielectric function. The third regime, from 2 nm to 10 nm, clearly displays the Drude circle, with no observable feature at the geometric percolation transition.

© 2010 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(240.0240) Optics at surfaces : Optics at surfaces
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: September 28, 2010
Revised Manuscript: October 25, 2010
Manuscript Accepted: October 26, 2010
Published: November 2, 2010

Xuefeng Wang, Kuo-ping Chen, Ming Zhao, and David D. Nolte, "Refractive index and dielectric constant transition of ultra-thin gold from cluster to Film," Opt. Express 18, 24859-24867 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. R. B. Laibowitz and Y. Gefen, “Dynamic Scaling near the Percolation-Threshold in Thin Au Films,” Phys. Rev. Lett. 53, 380–383 (1984). [CrossRef]
  3. J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003). [CrossRef] [PubMed]
  4. A. Gray, M. Balooch, S. Allegret, S. De Gendt, and W. E. Wang, “Optical detection and characterization of graphene by broadband spectrophotometry,” J. Appl. Phys. 104, 053109 (2008). [CrossRef]
  5. P. Grosse and V. Offermann, “Analysis of Reflectance Data Using the Kramers-Kronig Relations,” Appl. Phys. A 52, 138–144 (1991). [CrossRef]
  6. D. A. Crandles, F. Eftekhari, R. Faust, G. S. Rao, M. Reedyk, and F. S. Razavi, “Kramers-Kronig-constrained variational dielectric fitting and the reflectance of a thin film on a substrate,” Appl. Opt. 47(23), 4205–4211 (2008). [CrossRef] [PubMed]
  7. M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010). [CrossRef]
  8. F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. Steinberg, “Measurememt of Thickness and Refractive Index of Very Thin Films and Optical Properties of Surfaces by Ellipsometry,” J. Res. Natl. Bur. Stand. A: Phys. Chem. 67, 363–377 (1963).
  9. R. J. Archer, “Determination of Properties of Films on Silicon by Method of Ellipsometry,” J. .Opt. Soc. Amer. 52, 970– 977 (1962). [CrossRef]
  10. M. Yamamoto and T. Namioka, “In situ ellipsometric study of optical properties of ultrathin films,” Appl. Opt. 31(10), 1612–1621 (1992). [CrossRef] [PubMed]
  11. X. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46(32), 7836–7849 (2007). [CrossRef] [PubMed]
  12. X. F. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express 16(26), 22105–22112 (2008). [CrossRef] [PubMed]
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Academic Press Inc., 1955), pp. 66–80.
  14. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Tracts in Modern Physics (Berlin, 2000).
  15. H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang, “Analysis of the drude model in metallic films,” Appl. Opt. 40(34), 6307–6311 (2001). [CrossRef]
  16. F. Abeles, Optical Properties of Solids (North-Holland, 1972), p. 103.
  17. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007). [CrossRef]
  18. U. Kreibig and C. Vonfrags, “Limitation of Electron Mean Free Path in Small Silver Particles,” Zeitschrift Fur Physik 224, 307–323 (1969). [CrossRef]
  19. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113, 3041–3045 (2009). [CrossRef]
  20. C. Noguez and C. E. Roman-Velazquez, “Dispersive force between dissimilar materials: Geometrical effects,” Phys. Rev. B 70, 195412 (2004). [CrossRef]
  21. M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65, 125415 (2002). [CrossRef]
  22. T. Zychowicz, J. Krupka, and J. Mazierska, “Measurements of Conductivity of Thin Gold Films at Microwave Frequencies Employing Resonant Techniques,” Proceedings of Asia-Pacific Microwave Conference (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited