OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24868–24880

Huge light scattering from active anisotropic spherical particles

Xiaofeng Fan, Zexiang Shen, and Boris Luk’yanchuk  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24868-24880 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light scattering by a spherical particle with radial anisotropic permittivity ε and permeability μ are discussed in detail by expanding Mie theory. With the modified vector potential formulation, the electric anisotropy effects on scattering efficiency are addressed by studying the extinction, scattering, absorption and radar cross sections following the change of the transverse permittivity εt, the longitudinal permittivity εr and the particle size q. The huge scattering cross sections are shown by considering the possible coupling between active medium and plasmon polaritons and this will be possible to result in spaser from the active plasmons of small particle.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: October 4, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: October 28, 2010
Published: November 12, 2010

Xiaofeng Fan, Zexiang Shen, and Boris Luk'yanchuk, "Huge light scattering from active anisotropic spherical particles," Opt. Express 18, 24868-24880 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Brongersma, and P. G. Kik, Surface plasmon nanophotonics (Springer Series in Optical Sciences, Springer, 2007), Vol. 131. [CrossRef]
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  4. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1608 (2005). [CrossRef] [PubMed]
  5. J. A. Gordon, and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef] [PubMed]
  6. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006). [CrossRef] [PubMed]
  7. M. T. Hill,  et al., “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  8. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  9. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983). [CrossRef]
  10. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382, 607–609 (1996). [CrossRef] [PubMed]
  11. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127, 2264–2271 (2005). [CrossRef] [PubMed]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005). [CrossRef] [PubMed]
  13. S. Nie, and S. R. Emony, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  14. J. P. Kottmann, and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001). [CrossRef] [PubMed]
  15. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007). [CrossRef]
  16. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132, 5540–5541 (2010). [CrossRef] [PubMed]
  17. P. Andrew, and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004). [CrossRef] [PubMed]
  18. P. Andrew, and W. L. Barnes, “F¨orster energy transfer in an optical microcavity,” Science 290, 785–788 (2000). [CrossRef] [PubMed]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef] [PubMed]
  20. H. Liu, and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  21. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  22. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef] [PubMed]
  23. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004). [CrossRef]
  24. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31, 3022–3024 (2006). [CrossRef] [PubMed]
  25. J. Seidel, S. Grafstroum, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  26. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef] [PubMed]
  27. D. J. Bergman, and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  28. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  29. M. I. Stockman, “Spasers explained,” Nat. Photonics 2, 327–329 (2008). [CrossRef]
  30. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  31. E. Prodan, and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004). [CrossRef] [PubMed]
  32. R. D. Graglia, P. L. E. Uslenghi, and R. S. Zich, “Moment method with isoparametric elements for threedimensional anisotropic scatterers,” Proc. IEEE 77, 750–760 (1989). [CrossRef]
  33. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  34. V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antenn. Propag. 37, 800–802 (1989). [CrossRef]
  35. Y. L. Geng, X. B. Wu, L. W. Li, and B. R. Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 056609 (2004). [CrossRef]
  36. B. Stout, M. Neviere, and E. Popov, “Mie scattering by an anisotropic object. Part I: Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111–1123 (2006). [CrossRef]
  37. B. Stout, M. Neviere, and E. Popov, “Mie scattering by an anisotropic object. Part II: Arbitrary-shaped object differential theory,” J. Opt. Soc. Am. A 23, 1124–1134 (2006). [CrossRef]
  38. C.-W. Qiu, L. W. Li, T.-S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 026609 (2007). [CrossRef]
  39. B. S. Luk’yanchuk, and C.-W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys., A Mater. Sci. Process. 92, 773 (2008). [CrossRef]
  40. M. Born, and E. Wolf, Principles of optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  41. E. J. Rothwell, and M. J. Cloud, Electromagnetics, 2nd ed. (CRC Press, Taylor & Francis Group, 2009).
  42. W. C. Chew, Waves and fields in inhomogeneous media (Van Nostrand, New York, 1990).
  43. W. Ren, “Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 664–673 (1993). [CrossRef]
  44. C. T. Tai, Dyadic Green’s functions in electromagnetic theory, 2nd ed.(IEEE Press, Piscataway, NJ, 1994). [PubMed]
  45. A. L. Aden, and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 12421246 (1951). [CrossRef]
  46. Z. S. Wu, and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: Recursive algorithms,” Radio Sci. 26, 13931401 (1991). [CrossRef]
  47. R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026606 (2004). [CrossRef]
  48. P. W. Barber, and S. C. Hill, Light scattering by particles: computational methods (World Scientific, Singapore, 1990). [CrossRef]
  49. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).
  50. M. I. Tribelsky, and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006). [CrossRef]
  51. B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, “Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies,” Appl. Phys., A Mater. Sci. Process. 89, 259–264 (2007). [CrossRef]
  52. M. I. Tribelsky, “Anomalous light absorption by small particles,” arXiv:0912.3644v1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited