OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24888–24901

Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging

Zdeněk Petrášek and Klaus Suhling  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24888-24901 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that an ultra-fast CMOS camera combined with a photon counting image intensifier can be used to determine photon arrival times well below the exposure time of the camera. We can obtain a time resolution down to around 1% of the exposure time, i.e. of the order of 40 ns with microsecond exposure times. This is achieved by exploiting the invariant phosphor decay of the image intensifier’s phosphor screen: Developing a suitable mathematical framework, we show that the relative intensities of the phosphor decay in successive frames following the photon detection uniquely determine the photon arrival time. This approach opens a way to measuring fast luminescence decays in parallel in many pixels. Possible applications include oxygen and ion concentration imaging using probes with luminescence lifetimes in the range of 100 ns to microseconds.

© 2010 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(040.3780) Detectors : Low light level
(180.2520) Microscopy : Fluorescence microscopy
(230.0040) Optical devices : Detectors

ToC Category:

Original Manuscript: August 11, 2010
Revised Manuscript: September 22, 2010
Manuscript Accepted: September 23, 2010
Published: November 15, 2010

Zdenek Petrášek and Klaus Suhling, "Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging," Opt. Express 18, 24888-24901 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Suhling, P. M. W. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochem. Photobiol. Sci. 4, 13-22 (2005). [CrossRef]
  2. F. Festy, S. M. Ameer-Beg, T. Ng, and K. Suhling, "Imaging proteins in vivo using fluorescence lifetime microscopy," Mol. Biosyst. 3, 381-391 (2007). [CrossRef] [PubMed]
  3. M. Peter, and S. M. Ameer-Beg, "Imaging molecular interactions by multiphoton FLIM," Biol. Cell 96, 231-236 (2004). [CrossRef] [PubMed]
  4. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, "Fluorescence lifetime and polarization-resolved imaging in cell biology," Curr. Opin. Biotechnol. 20, 28-36 (2009). [CrossRef] [PubMed]
  5. D. V. O’Connor, and D. Phillips, Time-Correlated Single Photon Counting (Academic Press, 1984). ISBN 0125241402.
  6. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer, 2005). ISBN 3540260471. [CrossRef]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000). [CrossRef]
  8. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, "Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting," Rev. Sci. Instrum. 76, 083112 (2005). [CrossRef]
  9. X. Michalet, O. H. W. Siegmund, J. V. Vallerga, P. Jelinsky, J. E. Millaud, and S. Weiss, "Detectors for single molecule fluorescence imaging and spectroscopy," J. Mod. Opt. 54, 239-281 (2007). [CrossRef] [PubMed]
  10. G. Hungerford, and D. J. S. Birch, "Single-photon timing detectors for fluorescence lifetime spectroscopy," Meas. Sci. Technol. 7, 121-135 (1996). [CrossRef]
  11. X. Michalet, R. A. Colyer, J. Antelman, O. H. W. Siegmund, A. Tremsin, J. V. Vallerga, and S. Weiss, "Single quantum dot imaging with a photon counting camera," Curr. Pharm. Biotechnol. 10, 543-558 (2009). [CrossRef] [PubMed]
  12. Y. Prokazov, E. Turbin, M. Vitali, A. Herzog, B. Michaelis, W. Zuschratter, and K. Kemnitz, "Reborn quadrant anode image sensor," Nucl. Instrum. Methods Phys. Res., Sect. A 604, 221-223 (2009). [CrossRef]
  13. J. A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J. J. Vachon, R. Meallet-Renault, and R. B. Pansu, "Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy," J. Microsc. 229, 104-114 (2008). [CrossRef] [PubMed]
  14. Z. Petrášek, H. J. Eckert, and K. Kemnitz, "Wide-field photon counting fluorescence lifetime imaging microscopy: application to photosynthesizing systems," Photosynth. Res. 102, 157-168 (2009). [CrossRef]
  15. O. Jagutzki, A. Cerezo, A. Czasch, R. Dörner, M. Hattaß, M. Huang, V. Mergel, U. Spillmann, K. Ullmann-Pfleger, T. Weber, H. Schmidt-Böcking, and G. D. W. Smith, "Multiple Hit Readout of a Microchannel Plate Detector With a Three-Layer Delay-Line Anode," IEEE Trans. Nucl. Sci. 49, 2477-2483 (2002). [CrossRef]
  16. A. S. Tremsin, O. H. W. Siegmund, J. V. Vallerga, R. Raffanti, S. Weiss, and X. Michalet, "High speed multichannel charge sensitive data acquisition system with self-triggered event timing," IEEE Trans. Nucl. Sci. 56, 1148-1152 (2009). [CrossRef]
  17. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10527-102692 (2010).
  18. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, ""A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array," IEEE J. Sol.- St. Circ. 43, 2977-2989 (2008). [CrossRef]
  19. S. Tisa, F. Guerrieri, and F. Zappa, "Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates," Nucl. Instrum. Methods Phys. Res., Sect. A 610, 24-27 (2009). [CrossRef]
  20. G. Vereb, E. Jares-Erijman, P. R. Selvin, and T. M. Jovin, "Temporally and spectrally resolved imaging microscopy of lanthanide chelates," Biophys. J. 74, 2210-2222 (1998). [CrossRef] [PubMed]
  21. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, "Time resolved imaging microscopy - phosphorescence and delayed fluorescence imaging," Biophys. J. 60, 1374-1387 (1991). [CrossRef] [PubMed]
  22. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, "Direct modulation of the effective sensitivity of a ccd detector: a new approach to time-resolved fluorescence imaging," J. Microsc. 206, 225-232 (2002). [CrossRef] [PubMed]
  23. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, "Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier," N. J. Phys. 6, 180 (2004). [CrossRef]
  24. J. B. Hutchings, J. Postma, D. Asquin, and D. Leahy, "Photon event centroiding with UV photon-counting detectors," Publ. Astron. Soc. Pac. 119, 1152-1162 (2007). [CrossRef]
  25. H. W. Kröger, G. K. Schmidt, and N. Pailer, "Faint object camera - European contribution to the Hubble Space Telescope," ACTA Aeronaut. Astronaut. Sinica 26, 827-834 (1992).
  26. P. W. A. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E. Bingham, P. S. Broos, M. J. Carter, B. K. Hancock, H. E. Huckle, S. D. Hunsberger, H. Kawakami, R. Killough, T. S. Koch, M. K. Mclelland, K. Smith, P. J. Smith, J. C. Soto, P. T. Boyd, A. A. Breeveld, S. T. Holland, M. Ivanushkina, M. S. Pryzby, M. D. Still, and J. Stock, "The swift ultra-violet/optical telescope," Space Sci. Rev. 120, 95-142 (2005). [CrossRef]
  27. C. L. Joseph, "UV image sensors and associated technologies," Exp. Astron. 6, 97-127 (1995). [CrossRef]
  28. J. E. Lees, and G. W. Fraser, "Efficiency enhancements for MCP-based beta autoradiography imaging," Nucl. Instrum. Methods Phys. Res., Sect. A 477, 239-243 (2002). [CrossRef]
  29. P. D. Read, M. K. Carter, C. D. Pike, R. A. Harrison, B. J. Kent, B. M. Swinyard, B. E. Patchett, R. M. Redfern, A. Shearer, and M. Colhoun, "Uses of microchannel plate intensified detectors for imaging applications in the X-ray, EUV and visible wavelength regions,"Nucl. Instrum. Methods Phys. Res., Sect. A 392, 359-363 (1997). [CrossRef]
  30. K. Suhling, G. Hungerford, R. W. Airey, and B. L. Morgan, "A position-sensitive photon event counting detector applied to fluorescence imaging of dyes in sol-gel matrices," Meas. Sci. Technol. 12, 131-141 (2001). [CrossRef]
  31. N. A. Sharp, "Millisecond time resolution with the kitt peak photon-counting array," Publ. Astron. Soc. Pac. 104, 263-269 (1992). [CrossRef]
  32. M. H. V. Werts, "Making sense of lanthanide luminescence," Sci. Prog. 88, 101-131 (2005). [CrossRef]
  33. J. C. G. Bunzli, "Lanthanide luminescence for biomedical analyses and imaging," Chem. Rev. 110, 2729-2755 (2010). [CrossRef] [PubMed]
  34. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, "Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes," Proc. Natl. Acad. Sci. U.S.A. 105, 16071-16076 (2008). [CrossRef] [PubMed]
  35. Y. Yamaguchi, K. Hashino, M. Ito, K. Ikawa, T. Nishioka, and K. Matsumoto, "Sodium dodecyl sulfate polyacrylamide slab gel electrophoresis and hydroxyethyl cellurose gel capillary electrophoresis of luminescent lanthanide chelate-labeled proteins with time-resolved detection," Anal. Sci. 25, 327-332 (2009). [CrossRef] [PubMed]
  36. T. Nishioka, J. L. Yuan, Y. Yamamoto, K. Sumitomo, Z. Wang, K. Hashino, C. Hosoya, K. Ikawa, G. L. Wang, and K. Matsumoto, "New luminescent europium(III) chelates for DNA labeling," Inorg. Chem. 45, 4088-4096 (2006). [CrossRef] [PubMed]
  37. I. Hemmilä, and V. Laitala, "Progress in lanthanides as luminescent probes," J. Fluoresc. 15, 529-542 (2005). [CrossRef] [PubMed]
  38. P. R. Selvin, "Principles and biophysical applications of lanthanide-based probes," Annu. Rev. Biophys. Biomol. Struct. 31, 275-302 (2002). [CrossRef] [PubMed]
  39. W. K. Young, B. Vojnovic, and P. Wardman, "Measurement of oxygen tension in tumours by time-resolved fluorescence," Br. J. Cancer 74, S256-S259 (1996).
  40. M. P. Coogan, J. B. Court, V. L. Gray, A. J. Hayes, S. H. Lloyd, C. O. Millet, S. J. A. Pope, and D. Lloyd, "Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamideembedded [Ru(dpp(SO3Na)2)3]Cl2," Photochem. Photobiol. Sci. 9, 103-109 (2010). [CrossRef] [PubMed]
  41. N. A. Hosny, D. A. Lee, and K. M. M., "Extracellular oxygen concentration mapping with a confocal multiphoton laser scanning microscope and TCSPC card," Proc. SPIE 7569, 756932 (2010). [CrossRef]
  42. J. G. Mainprize, and M. J. Yaffe, "The effect of phosphor persistence on image quality in digital x-ray scanning systems," Med. Phys. 25, 2440-2454 (1998). [CrossRef]
  43. K. Suhling, R. Airey, and B. Morgan, ""Optimisation of centroiding algorithms for photon event counting imaging," Nucl. Instrum. Methods Phys. Res., Sect. A 437, 393-418 (1999). [CrossRef]
  44. K. Suhling, R. W. Airey, and B. L. Morgan, "Minimization of fixed pattern noise in photon event counting imaging," Rev. Sci. Instrum. 73, 2917-2922 (2002). [CrossRef]
  45. G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, "Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging," Nat. Methods 7, 209-211 (2010). [CrossRef] [PubMed]
  46. Z. Bajzer, A. Zelić, and F. G. Prendergast, "Analytical approach to the recovery of short fluorescence lifetimes from fluorescence decay curves," Biophys. J. 69, 1148-1161 (1995). [CrossRef] [PubMed]
  47. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, "Fast, bias-free algorithm for tracking single particles with variable size and shape," Opt. Express 16, 14064-14075 (2008). [CrossRef] [PubMed]
  48. Z. Petrášek, and P. Schwille, "Fluctuations as a source of information in fluorescence microscopy," J. R. Soc. Interface 6, S15-S25 (2009). [CrossRef]
  49. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, "Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore," Rev. Sci. Instrum. 74, 182-192 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited