OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24946–24960

Surface plasmon field enhancements in deterministic aperiodic structures

Roman Shugayev  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24946-24960 (2010)
http://dx.doi.org/10.1364/OE.18.024946


View Full Text Article

Enhanced HTML    Acrobat PDF (1951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm’s Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm’s law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 30, 2010
Revised Manuscript: October 30, 2010
Manuscript Accepted: November 5, 2010
Published: November 15, 2010

Citation
Roman Shugayev, "Surface plasmon field enhancements in deterministic aperiodic structures," Opt. Express 18, 24946-24960 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dal Negro, N. N. Fen, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008). [CrossRef]
  2. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. R. J. Brown and M. J. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  7. P. Y. Chung, T. H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett. 96(26), 261108 (2010). [CrossRef] [PubMed]
  8. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009). [CrossRef] [PubMed]
  9. P. Gadenne, F. Brouers, V. M. Shalaev, and A. K. Sarychev, “Giant Stokes fields on semicontinuous metal films,” J. Opt. Soc. Am. B 15(1), 68–72 (1998). [CrossRef]
  10. V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: Localization of dipole excitations and giant optical polarizabilities,” Physica A 207(1-3), 197–207 (1994). [CrossRef]
  11. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, New York, 2000), Vol. 158.
  12. C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express 17(12), 9648–9661 (2009). [CrossRef] [PubMed]
  13. T. Wriedt, “A review of elastic light scattering theories,” Part. Syst. Charact. 15(2), 67–74 (1998). [CrossRef]
  14. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite dust,” Astrophys. J. 333(2), 848–872 (1988). [CrossRef]
  15. A. K. Sarychev, D. J. Bergman, and Y. Yagil, “Theory of the optical and microwave properties of metal-dielectric films,” Phys. Rev. B Condens. Matter 51(8), 5366–5385 (1995). [CrossRef] [PubMed]
  16. R. Levy-Nathanson and D. J. Bergman, “Studies of the Generalized Ohm’s law,” Physica A 241(1-2), 166–172 (1997). [CrossRef]
  17. V. A. Shubin, A. K. Sarychev, J. P. Clerc, and V. M. Shalaev, “Local electric and magnetic fields in semicontinuous metal films: Beyond the quasistatic approximation,” Phys. Rev. B 62(16), 11230–11244 (2000). [CrossRef]
  18. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958). [CrossRef]
  19. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Plasmon localization and local field distribution in metal-dielectric films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056611 (2003). [CrossRef] [PubMed]
  20. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000). [CrossRef]
  21. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  22. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004). [CrossRef]
  23. D. A. Genov, V. M. Shalaev, and A. K. Sarychev, “Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films,” Phys. Rev. B 72(11), 113102 (2005). [CrossRef]
  24. R. Jullien, and R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)
  26. S. Alexander, “Vibration of fractals and scattering of light from aerogels,” Phys. Rev. B 40(11), 7953–7965 (1989). [CrossRef]
  27. R. E. Aitchison, “Resistance between adjacent points of Liebman mesh,” Am. J. Phys. 32(7), 566 (1964). [CrossRef]
  28. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005). [CrossRef]
  29. D. Weaire and B. Kramer, “Numerical methods in the study of the Anderson transition,” J. Non-Cryst. Solids 32(1–3), 131–140 (1979). [CrossRef]
  30. L. Zekri, R. Bouamrane, N. Zekri, and F. Brouers, “Localization and absorption of the local field in two-dimensional composite metal-dielectric films at the percolation threshold,” J. Phys. Condens. Matter 12(3), 283–291 (2000). [CrossRef]
  31. L. R. Hirsch, J. L. West, R. J. Stafford, J. A. Bankson, S. R. Sershen, R. E. Price, J. D. Hazle, and N. J. Halas, “Nanoshell-Mediated Photothermal Tumor Therapy,” Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, New York, 2003) Vol. 2, 1230–1231.
  32. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007). [CrossRef] [PubMed]
  33. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited