OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25000–25007

The spatially varying polarization of a focused Gaussian beam in quasi-phase-matched superlattice under electro-optic effect

Haibo Tang, Lixiang Chen, and Weilong She  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25000-25007 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present in this paper a wave coupling theory of linear electro-optic (EO) effect for quasi-phase matched (QPM) of focused Gaussian beam in an optical superlattice (OSL). The numerical results indicate that, due to the EO effect of an appropriate applied electric field, the output beam will form spatially inhomogeneous polarization, changing continuously in transverse section of beam; the confocal parameter has a significant impact on the output polarization of Gaussian beam and determines the half-wave voltage.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(230.2090) Optical devices : Electro-optical devices
(260.5430) Physical optics : Polarization

ToC Category:
Nonlinear Optics

Original Manuscript: November 1, 2010
Manuscript Accepted: November 4, 2010
Published: November 16, 2010

Haibo Tang, Lixiang Chen, and Weilong She, "The spatially varying polarization of a focused Gaussian beam in quasi-phase-matched superlattice under electro-optic effect," Opt. Express 18, 25000-25007 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  2. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  4. A. Bahabad, M. Murnane, and H. Kapteyn, “Quasi-phase-matching of momentum and energy in nonlinear optical processes,” Nat. Photonics 4(8), 571–575 (2010). [CrossRef]
  5. Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]
  6. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003). [CrossRef] [PubMed]
  7. Y. Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78(8), 1035–1037 (2001). [CrossRef]
  8. K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, and J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40(31), 5638–5642 (2001). [CrossRef]
  9. D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81(17), 3140–3142 (2002). [CrossRef]
  10. V. Magni, “Optimum beams for efficient frequency mixing in crystals with second order nonlinearity,” Opt. Commun. 184(1-4), 245–255 (2000). [CrossRef]
  11. G. Xu, T. Ren, Y. Wang, Y. Zhu, S. Zhu, and N. Ming, “Third-harmonic generation by use of focused Gaussian beams in an optical superlattice,” J. Opt. Soc. Am. B 20(2), 360–365 (2003). [CrossRef]
  12. C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Perfect quasi-phase matching for the third-harmonic generation using focused Gaussian beams,” Opt. Lett. 33(7), 720–722 (2008). [CrossRef] [PubMed]
  13. L. X. Chen and W. L. She, “Electro-optically forbidden or enhanced spin-to-orbital angular momentum conversion in a focused light beam,” Opt. Lett. 33(7), 696–698 (2008). [CrossRef] [PubMed]
  14. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  15. T. Brown and Q. W. Zhan, “Introduction: unconventional polarization States of light focus issue,” Opt. Express 18(10), 10775–10776 (2010). [CrossRef] [PubMed]
  16. X. L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010). [CrossRef] [PubMed]
  17. T. van Dijk, H. F. Schouten, W. Ubachs, and T. D. Visser, “The Pancharatnam-Berry phase for non-cyclic polarization changes,” Opt. Express 18(10), 10796–10804 (2010). [CrossRef] [PubMed]
  18. M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of unique space-variant polarizations,” Opt. Express 18(10), 10805–10812 (2010). [CrossRef] [PubMed]
  19. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005). [CrossRef] [PubMed]
  20. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  21. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  22. H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33(17), 1984–1986 (2008). [CrossRef] [PubMed]
  23. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008). [CrossRef]
  24. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002). [CrossRef]
  25. Q. Zhan and J. R. Leger, “Interferometric measurement of Berry’s phase in space-variant polarization manipulations,” Opt. Commun. 213(4-6), 241–245 (2002). [CrossRef]
  26. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27(21), 1929–1931 (2002). [CrossRef]
  27. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  28. G. MacHavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281(4), 732–738 (2008). [CrossRef]
  29. W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1-4), 303–311 (2001). [CrossRef]
  30. A. Ciattoni, B. Crosignani, and P. Porto, “Optimum beams for efficient frequency mixing in crystals with second order nonlinearity,” Opt. Commun. 177, 9–13 (2000). [CrossRef]
  31. A. Ciattoni, G. Cincotti, and C. Palma, “Nonparaxial description of reflection and transmission at the interface between an isotropic medium and a uniaxial crystal,” J. Opt. Soc. Am. A 19(7), 1422–1431 (2002). [CrossRef]
  32. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of Quasi-Phase-Matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]
  33. T. Kartaloğlu, Z. G. Figen, and O. Aytür, “Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate,” J. Opt. Soc. Am. B 20(2), 343–350 (2003). [CrossRef]
  34. R. Azzam, and N. Bashara, Ellipsometry and Polarized Light (Amsterdam: North-Holland, 1977).
  35. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966). [CrossRef]
  36. J. W. Zhao, C. P. Huang, Z. Q. Shen, Y. H. Liu, L. Fan, and Y. Y. Zhu, “Simultaneous harmonic generation and polarization control in an optical superlattice,” Appl. Phys. B 99(4), 673–677 (2010). [CrossRef]
  37. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80(6), 741–744 (2005). [CrossRef]
  38. Y. Kong, X. Chen, and Y. Xia, “Competition of frequency conversion and polarization coupling in periodically poled lithium niobate,” Appl. Phys. B 91(3-4), 479–482 (2008). [CrossRef]
  39. H. Tang, L. Chen, G. Zheng, D. Huang, and W. She, “Electrically controlled second harmonic generation of circular polarization in a single LiNbO3 optical superlattice,” Appl. Phys. B 94(4), 661–666 (2009). [CrossRef]
  40. Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3,” Opt. Express 17(14), 11965–11971 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited