OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25068–25074

An extraordinary directive radiation based on optical antimatter at near infrared

Vito Mocella, Principia Dardano, Ivo Rendina, and Stefano Cabrini  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25068-25074 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθout = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: August 24, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: October 29, 2010
Published: November 16, 2010

Vito Mocella, Principia Dardano, Ivo Rendina, and Stefano Cabrini, "An extraordinary directive radiation based on optical antimatter at near infrared," Opt. Express 18, 25068-25074 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pendry and S. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003). [CrossRef]
  2. V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102(13), 133902 (2009). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “Influence of surface termination on negative reflection by photonic crystals,” Opt. Express 15(11), 6605–6611 (2007). [CrossRef] [PubMed]
  5. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003). [CrossRef] [PubMed]
  6. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002). [CrossRef] [PubMed]
  7. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-Near-Zero (ENZ) Metamaterials and Electromagnetic Sources: Tailoring the Radiation Phase Pattern,” Phys. Rev. B 75(15), 155410 (2007). [CrossRef]
  8. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006). [CrossRef] [PubMed]
  9. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008). [CrossRef] [PubMed]
  10. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008). [CrossRef] [PubMed]
  11. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004). [CrossRef] [PubMed]
  12. M. Born, and E. Wolf, Principles of optics, 7th edition, (Cambridge University Press, Cambridge, 1999).
  13. E. G. Loewen, and E. Popov, Diffraction gratings and applications, (Marcel Dekker inc., New York Basel, 1997).
  14. A. Yariv, Quantum electronics, 3th edition, John Wiley & Sons, New York (1989).
  15. H. Chernoff and E. L. Lehmann, “The Use of Maximum Likelihood Estimates in χ2 Tests for Goodness of Fit,” Ann. Math. Stat. 25(3), 579–586 (1954). [CrossRef]
  16. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited