OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25127–25142

Quantum model for electro-optical amplitude modulation

José Capmany and Carlos R. Fernández-Pousa  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25127-25142 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics
(060.5565) Fiber optics and optical communications : Quantum communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(130.4110) Integrated optics : Modulators

ToC Category:
Quantum Optics

Original Manuscript: August 9, 2010
Revised Manuscript: September 29, 2010
Manuscript Accepted: November 1, 2010
Published: November 17, 2010

José Capmany and Carlos R. Fernández-Pousa, "Quantum model for electro-optical amplitude modulation," Opt. Express 18, 25127-25142 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Thylen, U. Westergren, P. Holmström, R. Schatz, and P. Jänes, “Recent developments in high-speed optical modulators,” in Optical Fiber Telecommunications V.A, I.P Kaminow, T. Li, and A.E. Willner, eds. (Academic Press, 2008), Chap. 7.
  2. G. P. Agrawal, Fiber-Optics Communications Systems (John Wiley & Sons, New York, 2002).
  3. C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge Univ. Press, 2004).
  4. M. Howerton, and W. K. Burns, “Broadband traveling wave modulators in LiNbO3,” in RF Photonic Technology in Optical Fiber Links, W.S. Chang, ed. (Cambridge Univ. Press, 2002), Chap. 5.
  5. G. E. Betts, “LiNbO3 external modulators and their use in high performance analog links,” in RF Photonic Technology in Optical Fiber Links(Cambridge Univ. Press, 2002), Chap. 4.
  6. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2006).
  7. N. Kashima, Passive optical Components for optical Fiber Transmission (Artech House, Boston, 1995).
  8. R. Syms, and J. Cozens, Optical Guided waves and Devices (McGraw-Hill, New York, 1992)
  9. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 1991)
  10. H. A. Bachor, and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, 2003).
  11. J. M. Mérolla, Y. Mazurenko, J.-P. Goedgebuer, L. Duraffourg, H. Porte, and W. T. Rhodes, “Quantum cryptographic device using single-photon phase modulation,” Phys. Rev. A 60(3), 1899–1905 (1999). [CrossRef]
  12. O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9(6), 1533–1540 (2003). [CrossRef]
  13. G. B. Xavier and J.-P. von der Weid, “Modulation schemes for frequency coded quantum key distribution,” Electron. Lett. 41(10), 607–608 (2005). [CrossRef]
  14. A. Ortigosa-Blanch and J. Capmany, “Subcarrier multiplexing optical quantum key distribution,” Phys. Rev. A 73(2), 024305 (2006). [CrossRef]
  15. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “Electro-optic modulation of single photons,” Phys. Rev. Lett. 101(10), 103601 (2008). [CrossRef] [PubMed]
  16. C. C. Gerry, and P. L. Knight, Introductory Quantum Optics (Cambridge Univ. Press, 2005).
  17. M. Fox, Quantum optics: An introduction (Oxford Univ. Press, 2006).
  18. J. C. Garrison, and R. Y. Chiao, Quantum Optics (Oxford Univ. Press, 2008).
  19. U. Leonhardt, “Quantum physics of simple optical instruments,” Rep. Prog. Phys. 66(7), 1207–1249 (2003). [CrossRef]
  20. P. Kumar and A. Prabhakar, “Evolution of quantum states in an electro-optic phase modulator,” IEEE J. Quantum Electron. 45(2), 149–156 (2009). [CrossRef]
  21. J. Capmany and C. R. Fernández-Pousa, “Quantum model for electro-optical phase modulation,” J. Opt. Soc. Am. B 27(6), A119–A129 (2010). [CrossRef]
  22. J. É. Capmany, A. Ortigosa-Blanch, J. É. Mora, A. Ruiz-Alba, W. Amaya, and A. Martinez, “Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation and quantum bit error rate,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1607–1621 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited