OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25217–25224

Designing the quality factor of infiltrated photonic wire slot microcavities

Clemens Schriever, Christian Bohley, and Jörg Schilling  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 25217-25224 (2010)
http://dx.doi.org/10.1364/OE.18.025217


View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One-dimensional photonic wire (nanobeam) microcavities are becoming preferred tools for the investigation of enhanced light-matter interaction. Here, the Q-factor of a locally infiltrated slot microcavity in a nanobeam is theoretically investigated. The electric field of the cavity mode is concentrated in the slot region leading to a large overlap with the infiltrated material. Tapering the spacing and diameter of the pores of the adjacent Bragg mirrors a maximum Q-factor of 35,000 is predicted. General design rules for the minimization of scattering losses and the enhancement of quality factors are reviewed and discussed.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(130.5296) Integrated optics : Photonic crystal waveguides
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: September 21, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 26, 2010
Published: November 17, 2010

Citation
Clemens Schriever, Christian Bohley, and Jörg Schilling, "Designing the quality factor of infiltrated photonic wire slot microcavities," Opt. Express 18, 25217-25224 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-25217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Boucaud, X. Li, M. E. Kurdi, S. David, X. Checoury, S. Sauvage, C. Kammerer, S. Cabaret, V. L. Thanh, D. Bouchier, J. M. Lourtioz, O. Kermarrec, Y. Campidelli, and D. Bensahel, "Ge islands and photonic crystals for Si-based photonics," Opt. Mater. 27, 792-798 (2005). [CrossRef]
  2. M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, "Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source," Opt. Express 16, 8780-8791 (2008). [CrossRef]
  3. M. H. Shih, W. Kuang, A. Mock, M. Bagheri, E. H. Hwang, J. D. OBrien, and P. D. Dapkus, "High-quality-factor photonic crystal heterostructure laser," Appl. Phys. Lett. 89, 101104 (2006). [CrossRef]
  4. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248-17253 (2007). [CrossRef]
  5. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  6. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, "Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities," Opt. Lett. 34, 2694-2696 (2009). [CrossRef] [PubMed]
  7. B. Ahn, J. Kang, M. Kim, J. Song, B. Min, K. Kim, and Y. Lee, "One-dimensional parabolic-beam photonic crystal laser," Opt. Express 18, 5654-5660 (2010). [CrossRef] [PubMed]
  8. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  9. J. Leuthold, W. Freude, J. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, "Silicon organic hybrid technology: a platform for practical nonlinear optics," (2009).
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  11. A. D. Falco, L.  OFaolain, and T. F.  Krauss, "Chemical sensing in slotted photonic crystal heterostructure cavities," Appl. Phys. Lett. 94, 063503 (2009). [CrossRef]
  12. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  13. C. Koos, P. Vorreau, P. Dumon, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "Highly-nonlinear silicon photonics slot waveguide," (2008).
  14. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat. Photonics 3, 216-219 (2009). [CrossRef]
  15. P. Muellner, M. Wellenzohn, and R. Hainberger, "Nonlinearity of optimized silicon photonic slot waveguides," Opt. Express 17, 9282-9287 (2009). [CrossRef] [PubMed]
  16. J. Brosi, C. Koos, L. C. Andreani, M. Waldow, and J. Leuthold, "andW. Freude, "High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008). [CrossRef] [PubMed]
  17. X. Chen, L. Gu, W. Jiang, and R. T. Chen, "20dB-enhanced coupling to slot photonic crystal waveguide based on multimode interference," in "Proceedings of SPIE," (San Jose, CA, USA, 2008), pp. 68990Q-68990Q-9.
  18. X. Chen, Y. Chen, Y. Zhao, W. Jiang, and R. T. Chen, "Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator," Opt. Lett. 34, 602-604 (2009). [CrossRef] [PubMed]
  19. P. W. Nolte, D. Pergande, S. L. Schweizer, M. Geuss, R. Salzer, B. T. Makowski, M. Steinhart, P. Mack, D. Herrmann, K. Busch, C. Weder, and R. B. Wehrspohn, "Photonic crystal devices with multiple dyes by consecutive local infiltration of single pores," Adv. Mater. (Deerfield Beach Fla.) XX, 1-5 (2010).
  20. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). [CrossRef] [PubMed]
  21. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006). [CrossRef] [PubMed]
  22. P. Lalanne, and J. P. Hugonin, "High-quality-factor photonic crystal heterostructure laser," IEEE J. Quantum Electron. 39, 1430 (2003). [CrossRef]
  23. P. Lalanne, C. Sauvan, and J. Hugonin, "Photon confinement in photonic crystal nanocavities," Laser Photon. Review 2, 514-526 (2008). [CrossRef] [PubMed]
  24. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, "Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  25. Q. Quan, P. B. Deotare, and M. Loncar, "Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide," Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited