OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25232–25240

Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25232-25240 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

© 2010 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: October 13, 2010
Manuscript Accepted: November 2, 2010
Published: November 17, 2010

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, "Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers," Opt. Express 18, 25232-25240 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and W. Karl, "Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  4. D. W. Garvey, K. Zimmermann, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, "Single-mode nonlinear-optical polymer fibers," J. Opt. Soc. Am. B 13, 2017-2023 (1996). [CrossRef]
  5. M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993). [CrossRef]
  6. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008). [CrossRef]
  7. M. A. Schmidt, L. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008). [CrossRef]
  8. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  9. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  10. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical device based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  11. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001). [CrossRef]
  12. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002). [CrossRef]
  13. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  15. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005). [CrossRef] [PubMed]
  16. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. Kivshar, "Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers," Opt. Express 15, 12145-12150 (2007). [CrossRef] [PubMed]
  17. P. D. Rasmussen, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, O. Bang, J. Laegsgaard, and Y. Kivshar, "Spatiotemporal control of light by Bloch-mode dispersion in multi-core fibers," Opt. Express 16, 5878-5891 (2008). [CrossRef] [PubMed]
  18. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, "Fluid-filled solid-core photonic bandgap fibers," J. Lightwave Technol. 27, 1617-1630 (2009). [CrossRef]
  19. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005). [CrossRef] [PubMed]
  20. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, "Two-octave supercontinuum generation in a water-filled photonic crystal fiber," Opt. Express 18, 6230-6240 (2010). [CrossRef] [PubMed]
  21. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, "Supercontinuum in a water-core photonic crystal fiber," Opt. Express 16, 9671-9676 (2008). [CrossRef] [PubMed]
  22. M. Heinrich, Y. V. Kartashov, L. P. R. Ramirez, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, "Observation of two-dimensional superlattice solitons," Opt. Lett. 34, 3701-3703 (2009). [CrossRef] [PubMed]
  23. M. Heinrich, Y. V. Kartashov, L. P. R. Ramirez, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, "Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices," Phys. Rev. A 80, 063832 (2009). [CrossRef]
  24. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  25. P. P. Ho, and R. R. Alfano, "Optical Kerr effect in liquids," Phys. Rev. A 20, 2170-2187 (1979). [CrossRef]
  26. J. W. Ellis, "The near infra-red absorption spectra of some organic liquids," Phys. Rev. 23, 48-62 (1924). [CrossRef]
  27. We chose CCl4 for our nonlinear experiments because with the available photonic crystal NL-2.3-790 and our liquids, CCl4 was the only one to provide anomalous dispersion at our pump wavelength of 1030nm.
  28. F. Ye, Y. V. Kartashov, B. Hu, and L. Torner, "Light bullets in Bessel optical lattices with spatially modulated nonlinearity," Opt. Express 17, 11328-11334 (2009). [CrossRef] [PubMed]
  29. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  30. MicroChem, http://www.microchem.com/products/su$_$eight.htm.
  31. Y. Wang, C. R. Liao, and D. N. Wang, "Femtosecond laser-assisted selective infiltration of microstructured optical fibers," Opt. Express 18, 18056-18060 (2010). [CrossRef] [PubMed]
  32. In principle, we operate at this wavelength under multimode conditions, but straight in coupling and a straight fiber supports the fundamental mode.
  33. NKT Photonics, http://www.nktphotonics.com/files/files/NL-23-790.pdf.
  34. H. H. Marvin, "The selective transmission and the dispersion of the liquid chlorides," Phys. Rev. 34, 161-186 (1912).
  35. A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003). [CrossRef]
  36. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003). [CrossRef] [PubMed]
  37. N. K. T. Photonics, http://www.nktphotonics.com/files/files/LMA-8-100409.pdf.
  38. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  39. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  40. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  41. A. V. Husakou, and J. Hermann, "Supercontinuum generation of high-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  42. F. Hoos, T. P. Meyrath, S. Li, B. Braun, and H. Giessen, "Femtosecond 5-W Yb:KGW slab laser oscillator pumped by a single broad-area diode and its application as supercontinuum source," Appl. Phys. B 96, 5-10 (2009). [CrossRef]
  43. A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, "Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber," Laser Phys. Lett. 7, 46-49 (2010). [CrossRef]
  44. N. Akhmediev, and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  45. Y. R. Shen, Principles of Nonlinear Optics (Wiley, Hoboken, 2003).
  46. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006). [CrossRef] [PubMed]
  47. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  48. R. V. J. Raja, A. Husakou, J. Hermann, and K. Porsezian, "Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response," J. Opt. Soc. Am. B 27, 1763-1768 (2010). [CrossRef]
  49. C. Conti, M. Schmidt, P. St. Russell, and F. Biancalana, "Linearons: highly non-instantaneous solitons in liquidcore photonic crystal fibers," arXiv:1010.0331v1 [physics.optics], http://arxiv.org/abs/1010.0331.
  50. M. Midrio, M. P. Singh, and C. G. Someda, "The space-filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  51. K. Itho, Y. Toda, R. Morita, and M. Yamashita, "Coherent optical control of molecular motion using polarized sequential pulses," Jpn. J. Appl. Phys. 43, 6448-6451 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited