OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25292–25298

Rapid wide-field photon counting imaging with microsecond time resolution

Nicolas Sergent, James A. Levitt, Mark Green, and Klaus Suhling  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25292-25298 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel wide-field imaging method capable of time-correlated single photon counting. It is based on a photon counting image intensifier coupled to an ultra-fast CMOS camera running at 40 kHz frame rate. Using a pulsed excitation source and decaying luminescent sample, the arrival times of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution and reduced photon pile-up. The detection system is mounted on an inverted microscope and applied to time-resolved imaging of Europium-containing polyoxometalate nanoparticles.

© 2010 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(180.2520) Microscopy : Fluorescence microscopy
(230.0040) Optical devices : Detectors

ToC Category:

Original Manuscript: August 19, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 9, 2010
Published: November 18, 2010

Klaus Suhling, Nicolas Sergent, James Levitt, and Mark Green, "Rapid wide-field photon counting imaging with microsecond time resolution," Opt. Express 18, 25292-25298 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. V. Werts, “Making sense of lanthanide luminescence,” Sci. Prog. 88, 101–131 (2005). [CrossRef]
  2. J.-C. G. Bünzli, “Lanthanide Luminescence for Biomedical Analyses and Imaging,” Chem. Rev. 110, 2729–2755 (2010). [CrossRef] [PubMed]
  3. Y. Yamaguchi, K. Hashino, M. Ito, K. Ikawa, T. Nishioka, and K. Matsumoto, “Sodium Dodecyl Sulfate Polyacrylamide Slab Gel Electrophoresis and Hydroxyethyl Cellurose Gel Capillary Electrophoresis of Luminescent Lanthanide Chelate-labeled Proteins with Time-Resolved Detection,” Anal. Sci. 25, 327–332 (2009). [CrossRef] [PubMed]
  4. T. Nishioka, J. L. Yuan, Y. Yamamoto, K. Sumitomo, Z. Wang, K. Hashino, C. Hosoya, K. Ikawa, G. L. Wang, and K. Matsumoto, “New Luminescent Europium(III) Chelates for DNA Labeling,” Inorg. Chem. 45, 4088–4096 (2006). [CrossRef] [PubMed]
  5. P. R. Selvin, “Principles and Biophysical Applications of Lanthanide-Based Probes,” Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002). [CrossRef] [PubMed]
  6. I. Hemmilä, and V. Laitala, “Progress in Lanthanides as Luminescent Probes,” J. Fluoresc. 15, 529–542 (2005). [CrossRef] [PubMed]
  7. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105, 16071–16076 (2008). [CrossRef] [PubMed]
  8. N. A. Hosny, D. A. Lee, and M. M. Knight, “Extracellular oxygen concentration mapping with confocal multiphoton laser scanning microscope and TCSPC card,” Proc. SPIE 7569, 756932–1 - 756932–6 (2010).
  9. K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4, 13–22 (2005). [CrossRef]
  10. F. Festy, S. M. Ameer-Beg, T. Ng, and K. Suhling, “Imaging proteins in vivo using fluorescence lifetime microscopy,” Mol. Biosyst. 3, 381–391 (2007). [CrossRef] [PubMed]
  11. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time-resolved imaging microscopy,” Biophys. J. 60, 1374–1387 (1991). [CrossRef] [PubMed]
  12. G. Vereb, E. Jares-Erijman, P. R. Selvin, and T. M. Jovin, “Temporally and Spectrally Resolved Imaging Microscopy of Lanthanide Chelates,” Biophys. J. 74, 2210–2222 (1998). [CrossRef] [PubMed]
  13. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002). [CrossRef]
  14. J. E. Lees, and G. W. Fraser, “Efficiency enhancements for MCP-based beta autoradiography imaging,” Nucl. Instrum. Methods Phys. Res. A 477, 239–243 (2002). [CrossRef]
  15. P. D. Read, M. K. Carter, C. D. Pike, R. A. Harrison, B. J. Kent, B. M. Swinyard, B. E. Patchett, R. M. Redfern, A. Shearer, and M. Colhoun, “Uses of microchannel plate intensified detectors for imaging applications in the X-ray, EUV and visible wavelength regions,” Nucl. Instrum. Methods Phys. Res. A 392, 359–363 (1997). [CrossRef]
  16. J. B. Hutchings, J. Postma, D. Asquin, and D. Leahy, “Photon Event Centroiding with UV Photon-counting Detectors,” Publ. Astron. Soc. Pac. 119, 1152–1162 (2007). [CrossRef]
  17. P. W. A. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E. Bingham, P. S. Broos, M. J. Carter, B. K. Hancock, H. E. Huckle, S. D. Hunsberger, H. Kawakami, R. Killough, T. S. Koch, M. K. Mclelland, K. Smith, P. J. Smith, J. C. Soto, P. T. Boyd, A. A. Breeveld, S. T. Holland, M. Ivanushkina, M. S. Pryzby, M. D. Still, and J. Stock, “The Swift Ultra-Violet/Optical Telescope,” Space Sci. Rev. 120, 95–142 (2005). [CrossRef]
  18. H. W. Kröger, G. K. Schmidt, and N. Pailer, “Faint object camera: European contribution to the Hubble Space Telescope,” Astronaut. Acta 26, 827–834 (1992). [CrossRef]
  19. K. O. Mason, A. Breeveld, R. Much, M. Carter, F. A. Cordova, M. S. Cropper, J. Fordham, H. Huckle, C. Ho, H. Kawakami, J. Kennea, T. Kennedy, J. Mittaz, D. Pandel, W. C. Priedhorsky, T. Sasseen, R. Shirey, P. Smith, and J.-M. Vreux, “The XMM-Newton optical/UV monitor telescope,” Astron. Astrophys. 365, L36–L44 (2001). [CrossRef]
  20. C. L. Joseph, “UV Image sensors and associated technologies,” Exp. Astron. 6, 97–127 (1995). [CrossRef]
  21. K. Suhling, G. Hungerford, R. W. Airey, and B. L. Morgan, “A position-sensitive photon event counting detector applied to fluorescence imaging of dyes in sol-gel matrices,” Meas. Sci. Technol. 12, 131–141 (2001). [CrossRef]
  22. K. Suhling, R. W. Airey, and B. L. Morgan, “Minimization of fixed pattern noise in photon event counting imaging,” Rev. Sci. Instrum. 73, 2917–2922 (2002). [CrossRef]
  23. K. Suhling, R. W. Airey, and B. L. Morgan, ““Optimisation of centroiding algorithms for photon event counting imaging,” Nucl. Instrum. A 437, 393–418 (1999).
  24. N. A. Sharp, “Millisecond time resolution with the Kitt Peak photon-counting array,” Publ. Astron. Soc. Pac. 104, 263–269 (1992). [CrossRef]
  25. O. H. W. Siegmund, “High-performance microchannel plate detectors for UV/visible astronomy,” Nucl. Instrum. Methods Phys. Res. A 525, 12–16 (2004). [CrossRef]
  26. Z. Petrášek, and K. Suhling, “Photon arrival timing with sub-camera exposure time resolution in wide-field timeresolved photon counting imaging,” Opt. Express 18(24), 24888–24901 (2010). [CrossRef]
  27. R. D. Peacock, and T. J. R. Weakley, “Heteropolytungstate Complexes of the Lanthanide Elements. Part I. Preparation and Reactions,” J. Chem. Soc. A 11, 1836–1839 (1971). [CrossRef]
  28. M. Green, J. Harries, G. Wakefield, and R. Taylor, “The Synthesis of Silica Nanospheres Doped with Polyoxometalates,” J. Am. Chem. Soc. 127, 12812–12813 (2005). [CrossRef] [PubMed]
  29. R. Ballardini, Q. G. Mulazzani, M. Venturi, F. Bolletta, and V. Balzani, “Photophysical Characterization of the Decatungstoeuropate(9-) Anion,” Inorg. Chem. 23(3), 300–305 (1984). [CrossRef]
  30. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer, Heidelberg, Vol 81, 2005). [CrossRef]
  31. G. Bub, M. Tecza, M. Helmes, P. Lee, and P. Kohl, “Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging,” Nat. Methods 7(3), 209–211 (2010). [CrossRef] [PubMed]
  32. H. C. Gerritsen, N. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002). [CrossRef] [PubMed]
  33. D. L. Kolin, and P. W. Wiseman, “Advances in Image Correlation Spectroscopy: Measuring Number Densities, Aggregation States, and Dynamics of Fluorescently labeled Macromolecules in Cells,” Cell Biochem. Biophys. 49, 141–164 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited