OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25321–25328

Localized surface plasmon resonance interaction with Er3+-doped tellurite glass

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega, Jr.  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25321-25328 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show the annealing effect on silver and Erbium- doped tellurite glasses in the formation of nanoparticles (NPs) of silver, produced by the reduction of silver (Ag+→Ag0), aiming to an fluorescence enhancement. The absorption spectra show typical Localized Surface Plasmon Resonance (LSPR) band of Ag0 NP in addition to the distinctive absorption peaks of Er3+ ions. Both observations demonstrate that the photoluminescence enhancement is due to the coupling of dipoles formed by NPs with the Er3+ 4I13/24I15/2 transition. This plasmon energy transfer to the Er3+ ions was observed in the fluorescence spectrum with a blue-shift of the peaks.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics at Surfaces

Original Manuscript: August 31, 2010
Revised Manuscript: October 11, 2010
Manuscript Accepted: October 14, 2010
Published: November 19, 2010

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega, "Localized surface plasmon resonance interaction with Er3+-doped tellurite glass," Opt. Express 18, 25321-25328 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad, Nanophotonics (Wiley, New York, 2004).
  2. C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007). [CrossRef] [PubMed]
  3. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000). [CrossRef]
  4. T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009). [CrossRef]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  7. O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985). [CrossRef]
  8. V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007). [CrossRef]
  9. V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006). [CrossRef]
  10. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992). [CrossRef] [PubMed]
  11. T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996). [CrossRef] [PubMed]
  12. Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001). [CrossRef]
  13. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  14. F. Vallé, In Nanoscience: Nanomaterials and Nanochemistry, C. Dupas and M. Lahmani, Eds.; (Springer, Berlin, 2008), 197 pages.
  15. D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004). [CrossRef]
  16. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009). [CrossRef] [PubMed]
  17. C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001). [CrossRef]
  18. F. Hache, D. Ricard, and C. J. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986). [CrossRef]
  19. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef]
  20. JCPDS Card File No. 4–0783.
  21. G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  22. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited