OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25329–25338

Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly

Sung Hyun Nam, Jiangfeng Zhou, Antoinette J. Taylor, and Anatoly Efimov  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25329-25338 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new class of plasmonic crystals possessing graphene-like internal symmetries and Dirac-type spectrum in k-space. We study dynamics of surface plasmon polaritons supported in the plasmonic crystals by employing the formalism of Dirac dynamics for relativistic quantum particles. Through an analogy with graphene, we introduce a concept of pseudo-spin and chirality to indicate built-in symmetry of the plasmonic crystals near Dirac point. The surface plasmon polaritons with different pseudo-spin states are shown to split in the crystals into two beams, analogous to spin Hall effect.

© 2010 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(240.6680) Optics at surfaces : Surface plasmons
(260.1960) Physical optics : Diffraction theory
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: September 7, 2010
Revised Manuscript: November 1, 2010
Manuscript Accepted: November 5, 2010
Published: November 19, 2010

Sung Hyun Nam, Jiangfeng Zhou, Antoinette J. Taylor, and Anatoly Efimov, "Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly," Opt. Express 18, 25329-25338 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  3. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008). [CrossRef]
  4. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009). [CrossRef]
  5. X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100(11), 113903 (2008). [CrossRef] [PubMed]
  6. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007). [CrossRef] [PubMed]
  7. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M. Segev, and T. Pereg-Barnea, “Klein tunneling in deformed honeycomb lattices,” Phys. Rev. Lett. 104(6), 063901 (2010). [CrossRef] [PubMed]
  8. S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18(10), 10120–10126 (2010). [CrossRef] [PubMed]
  9. S. Hyun Nam, E. Ulin-Avila, G. Bartal, and X. Zhang, “Deep subwavelength surface modes in metal-dielectric metamaterials,” Opt. Lett. 35(11), 1847–1849 (2010). [CrossRef] [PubMed]
  10. A. A. Sukhorukov and Y. S. Kivshar, “Discrete gap solitons in modulated waveguide arrays,” Opt. Lett. 27(23), 2112–2114 (2002). [CrossRef]
  11. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  12. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2(9), 620–625 (2006). [CrossRef]
  13. T. Ando, T. Nakanishi, and R. Saito, “Berry's phase and absence of back scattering in carbon nanotubes,” J. Phys. Soc. Jpn. 67(8), 2857–2862 (1998). [CrossRef]
  14. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano 2(11), 2301–2305 (2008). [CrossRef]
  15. F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering,” Nat. Phys. 6(1), 30–33 (2010). [CrossRef]
  16. A. K. Geim and A. H. MacDonald, “Graphene: Exploring carbon flatland,” Phys. Today 60(8), 35–41 (2007). [CrossRef]
  17. J. K. Furdyna, “Split light,” Physics 3, 56 (2010). [CrossRef]
  18. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004). [CrossRef] [PubMed]
  19. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008). [CrossRef] [PubMed]
  20. B. Thaller, Advanced visual quantum mechanics, (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited