OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25441–25448

Concentration of terahertz radiation through a conically tapered aperture

Tho Duc Nguyen, Z. Valy Vardeny, and Ajay Nahata  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25441-25448 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that conically tapered cylindrical apertures can be used to efficiently concentrate broadband terahertz (THz) radiation. Keeping the aperture diameter on the input plane fixed, we show that as the diameter of the aperture on the exit plane is decreased, we obtain an increase in the magnitude of the transmitted electric field that varies inversely with the output aperture diameter. Correspondingly, the transmitted THz intensity concentration increases inversely with the square of the output aperture diameter. For the smallest aperture that we fabricated, we obtain a ~50 fold increase in the transmitted THz intensity. We expect further increases in the intensity concentration with smaller output apertures. As the output aperture diameter is decreased with a corresponding increase in the concentration factor, we directly measure an increase in the propagation time delay of a narrowband pulse through the structure. Finally, we demonstrate that further increase in the concentration factor can be achieved by engraving circular grooves around the input aperture.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Diffraction and Gratings

Original Manuscript: October 28, 2010
Revised Manuscript: November 17, 2010
Manuscript Accepted: November 17, 2010
Published: November 19, 2010

Tho Duc Nguyen, Z. Valy Vardeny, and Ajay Nahata, "Concentration of terahertz radiation through a conically tapered aperture," Opt. Express 18, 25441-25448 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  3. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000). [CrossRef]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  5. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005). [CrossRef]
  6. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  7. A. V. Zayats and I. I. Smolyaninov, “High-optical-throughput individual nanoscale aperture in a multilayered metallic film,” Opt. Lett. 31(3), 398–400 (2006). [CrossRef] [PubMed]
  8. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007). [CrossRef]
  9. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008). [CrossRef] [PubMed]
  10. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008). [CrossRef]
  11. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  12. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18(9), 9643–9650 (2010). [CrossRef] [PubMed]
  13. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher order Hermite-Gaussian beams,” Ultramicroscopy 71(1-4), 21–29 (1998). [CrossRef]
  14. T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88(7), 071101 (2006). [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  16. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  17. A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express 16(13), 9601–9613 (2008). [CrossRef] [PubMed]
  18. N. Marcuvitz, Waveguide Handbook, (New York: McGraw-Hill, 1951).
  19. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  20. A. Agrawal, H. Cao, and A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,” N. J. Phys. 7, 249 (2005). [CrossRef]
  21. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13(9), 3535–3542 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited