OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25468–25481

ImFCS: A software for Imaging FCS data analysis and visualization

Jagadish Sankaran, Xianke Shi, Liang Yoong Ho, Ernst H. K. Stelzer, and Thorsten Wohland  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25468-25481 (2010)
http://dx.doi.org/10.1364/OE.18.025468


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multiplexing of fluorescence correlation spectroscopy (FCS), especially in imaging FCS using fast, sensitive array detectors, requires the handling of large amounts of data. One can easily collect in excess of 100,000 FCS curves a day, too many to be treated manually. Therefore, ImFCS, an open-source software which relies on standard image files was developed and provides a wide range of options for the calculation of spatial and temporal auto- and cross-correlations, as well as differences in Cross-Correlation Functions (ΔCCF). ImFCS permits fitting of standard models to correlation functions and provides optimized histograms of fitted parameters. Applications include the measurement of diffusion and flow with Imaging Total Internal Reflection FCS (ITIR-FCS) and Single Plane Illumination Microscopy FCS (SPIM-FCS) in biologically relevant samples. As a compromise between ITIR-FCS and SPIM-FCS, we extend the applications to Imaging Variable Angle-FCS (IVA-FCS) where sub-critical oblique illumination provides sample sectioning close to the cover slide.

© 2010 OSA

OCIS Codes
(040.1490) Detectors : Cameras
(040.1520) Detectors : CCD, charge-coupled device
(110.0110) Imaging systems : Imaging systems
(300.0300) Spectroscopy : Spectroscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Spectroscopy

History
Original Manuscript: August 12, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 26, 2010
Published: November 22, 2010

Citation
Jagadish Sankaran, Xianke Shi, Liang Yoong Ho, Ernst H. K. Stelzer, and Thorsten Wohland, "ImFCS: A software for Imaging FCS data analysis and visualization," Opt. Express 18, 25468-25481 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999). [CrossRef] [PubMed]
  2. M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array,” J. Biomed. Opt. 9(5), 913–921 (2004). [CrossRef] [PubMed]
  3. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006). [CrossRef] [PubMed]
  4. M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14(12), 5013–5020 (2006). [CrossRef] [PubMed]
  5. D. R. Sisan, R. Arevalo, C. Graves, R. McAllister, and J. S. Urbach, “Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope,” Biophys. J. 91(11), 4241–4252 (2006). [CrossRef] [PubMed]
  6. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007). [CrossRef] [PubMed]
  7. L. Guo, J. Y. Har, J. Sankaran, Y. M. Hong, B. Kannan, and T. Wohland, “Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study,” ChemPhysChem 9(5), 721–728 (2008). [CrossRef] [PubMed]
  8. J. Sankaran, M. Manna, L. Guo, R. Kraut, and T. Wohland, “Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy,” Biophys. J. 97(9), 2630–2639 (2009). [CrossRef] [PubMed]
  9. T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express 18(10), 10627–10641 (2010). [CrossRef] [PubMed]
  10. M. Matsumoto, T. Sugiura, and K. Minato, “Spatially resolved fluorescence correlation spectroscopy based on electron multiplying CCD - art. no. 663017,” in Confocal, Multiphoton, and Nonlinear Microscopic Imaging III, T. Wilson, and A. Periasamy, eds. (2007), pp. 63017–63017.
  11. M. Matsumoto, T. Sugiura, and K. Minato, “Illumination by Near-Critical-Angle Incidence for Imaging Fluorescence Correlation Spectroscopy with Electron-Multiplying Charge-Coupled Device Camera,” Jpn. J. Appl. Phys. 49(6), 060208 (2010). [CrossRef]
  12. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]
  13. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  14. R. Rigler, H. Vogel, Z. Petrášek, and P. Schwille, “Scanning Fluorescence Correlation Spectroscopy,” in Single Molecules and Nanotechnology (Springer Berlin Heidelberg, 2008), pp. 83–105.
  15. “Tiff 6.0 specification,” http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf .
  16. W. S. Rasband, “ImageJ,” (U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/ , 1997–2009).
  17. K. Schaetzel, and R. Peters, “Noise on multiple-tau photon correlation data,” S. S. Kenneth, ed., (SPIE, 1991), pp. 109–115.
  18. T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80(6), 2987–2999 (2001). [CrossRef] [PubMed]
  19. X. Shi, and T. Wohland, “Fluorescence Correlation Spectroscopy,” in Nanoscopy and Multidimensional Optical Fluorescence Microscopy A. Diaspro, ed. (CRC Press, 2010).
  20. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).
  21. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46(10), 1819–1829 (2007). [CrossRef] [PubMed]
  22. B. Zhang, J. Zerubia, and J. C. Olivo-Marin, “A study of Gaussian approximations of fluorescence microscopy PSF models - art. no. 60900K,” in Conference on Three-Dimensional and Multidimensional Microscopy - Image Acquisition and Processing XIII, J. A. Conchello, C. J. Cogswell, and T. Wilson, eds., (SPIE, San Jose, CA, 2006), pp. K900–K900.
  23. J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008). [CrossRef] [PubMed]
  24. D. Freedman and P. Diaconis, “On the histogram as a density estimator-L2 theory,” Probab. Theory Relat. Fields 57, 453–476 (1981).
  25. C. A. Konopka and S. Y. Bednarek, “Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex,” Plant J. 53(1), 186–196 (2008). [CrossRef]
  26. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008). [CrossRef] [PubMed]
  27. M. Tokunga, N. Imamoto, and K. Sakata-Sogawa, “Addendum: Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(5), 455–455 (2008). [CrossRef]
  28. J. Ries, M. Bayer, G. Csúcs, R. Dirkx, M. Solimena, H. Ewers, and P. Schwille, “Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy,” Opt. Express 18(11), 11073–11082 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited