OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25509–25518

Low-threshold bistability in nonlinear microring tower resonator

Mehdi Shafiei and Mohammad Khanzadeh  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25509-25518 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microring tower resonators, which are a chain of microring resonators stacked on top of each other, are of great interest for nonlinear optics due to their unique features such as very high compactness, coupling efficiency and quality factor. In this research, we investigate the optical bistability in microring tower (MRT) with Kerr nonlinearity by using the coupled mode theory, and demonstrate how a proper defect into the structure can lead to low threshold bistability. In particular, we observed optical bistability in nonlinear defect modes with switching power as low as 165 μ W through numerical calculations in a structure with a overall loss on the order of 0.01 m m 1 . In addition, we also develop an analytical model that excellently gives the position of defect modes in linear regime.

© 2010 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: August 23, 2010
Revised Manuscript: November 11, 2010
Manuscript Accepted: November 12, 2010
Published: November 22, 2010

Mehdi Shafiei and Mohammad Khanzadeh, "Low-threshold bistability in nonlinear microring tower resonator," Opt. Express 18, 25509-25518 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, 1985).
  2. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  3. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express 17(26), 23637–23642 (2009). [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005). [CrossRef] [PubMed]
  5. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601–055604 (2002). [CrossRef]
  6. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Micro-ring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  7. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  8. M. Sumetsky, “Vertically-stacked multi-ring resonator,” Opt. Express 13(17), 6354–6375 (2005). [CrossRef] [PubMed]
  9. M. Shafiei, M. Khanzadeh, M. Agha-Bolorizadeh, and R. F. Moghaddam, “Linear transmission properties of a vertically stacked multiring resonator with a defect,” Appl. Opt. 48(31), G148–G155 (2009). [CrossRef] [PubMed]
  10. D. N. Christodoulides and E. D. Eugenieva, “Minimizing bending losses in two-dimensional discrete soliton networks,” Opt. Lett. 26(23), 1876–1878 (2001). [CrossRef]
  11. K. Okamoto, Fundamentals of Optical Waveguides, (Elsevier, 2006), Chap. 4.
  12. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18(10), 1580–1583 (1982). [CrossRef]
  13. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13(9), 794–796 (1988). [CrossRef] [PubMed]
  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81(16), 3383–3386 (1998). [CrossRef]
  15. A. Villeneuve, C. Yang, G. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62(20), 2465–2467 (1993). [CrossRef]
  16. A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008). [CrossRef]
  17. H. Zhang, V. Gauss, P. Wen, and S. Esener, “Observation of wavelength and multiple bistabilities in 850nm Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs),” Opt. Express 15(18), 11723–11730 (2007). [CrossRef] [PubMed]
  18. E. Weidner, S. Combri’e, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101–118 (2007). [CrossRef]
  19. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13(23), 9623–9628 (2005). [CrossRef] [PubMed]
  20. N. G. R. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16(20), 16247–16254 (2008). [CrossRef] [PubMed]
  21. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004). [CrossRef]
  22. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004). [CrossRef] [PubMed]
  23. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  24. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited