OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25519–25534

Spectroscopic optical coherence elastography

Steven G. Adie, Xing Liang, Brendan F. Kennedy, Renu John, David D. Sampson, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25519-25534 (2010)
http://dx.doi.org/10.1364/OE.18.025519


View Full Text Article

Enhanced HTML    Acrobat PDF (2240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(350.0350) Other areas of optics : Other areas of optics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Imaging Systems

History
Original Manuscript: August 24, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: October 29, 2010
Published: November 22, 2010

Citation
Steven G. Adie, Xing Liang, Brendan F. Kennedy, Renu John, David D. Sampson, and Stephen A. Boppart, "Spectroscopic optical coherence elastography," Opt. Express 18, 25519-25534 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications. (Springer, New York, 2009).
  2. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998). [CrossRef] [PubMed]
  3. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005). [CrossRef] [PubMed]
  4. G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007). [CrossRef] [PubMed]
  5. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004). [CrossRef] [PubMed]
  6. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006). [CrossRef] [PubMed]
  7. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  8. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006). [CrossRef]
  9. R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007). [CrossRef]
  10. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003). [CrossRef] [PubMed]
  11. M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low- frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003). [CrossRef]
  12. M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009). [CrossRef] [PubMed]
  13. X. Liang, and S. A. Boppart, “Dynamic optical coherence elastography and applications,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuG2.
  14. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  15. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  16. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  17. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010). [CrossRef] [PubMed]
  18. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009). [CrossRef] [PubMed]
  19. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010). [CrossRef]
  20. M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998). [CrossRef] [PubMed]
  21. M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999). [CrossRef] [PubMed]
  22. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009). [CrossRef]
  23. A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010). [CrossRef] [PubMed]
  24. S. S. Rao, Mechanical Vibrations, (Addison-Wesley, Reading Massachusetts, 1986).
  25. B. Ströbel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Opt. 35(13), 2192–2198 (1996). [CrossRef] [PubMed]
  26. C. J. Tay, C. Quan, and W. Chen, “Dynamic measurement by digital holographic interferometry based on complex phasor method,” Opt. Laser Technol. 41(2), 172–180 (2009). [CrossRef]
  27. C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282(5), 809–815 (2009). [CrossRef]
  28. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008). [CrossRef] [PubMed]
  29. R. A. Leitgeb, and M. Wojtkowski, “Complex and coherence noise free Fourier domain optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds., (Springer, New York, 2008).
  30. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  31. P. J. Prendergast, “Finite element models in tissue mechanics and orthopaedic implant design,” Clin. Biomech. (Bristol, Avon) 12(6), 343–366 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited