OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25584–25595

Programming of inhomogeneous resonant guided wave networks

Eyal Feigenbaum, Stanley P. Burgos, and Harry A. Atwater  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25584-25595 (2010)
http://dx.doi.org/10.1364/OE.18.025584


View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range.

© 2010 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: October 1, 2010
Revised Manuscript: November 3, 2010
Manuscript Accepted: November 5, 2010
Published: November 22, 2010

Citation
Eyal Feigenbaum, Stanley P. Burgos, and Harry A. Atwater, "Programming of inhomogeneous resonant guided wave networks," Opt. Express 18, 25584-25595 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Photonic crystals: semiconductors of light,” Sci. Am. 285(6), 46–51, 54–55 (2001). [CrossRef]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of light, 2’nd Ed. (New Jersey, Princeton, 2008).
  3. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005). [CrossRef] [PubMed]
  4. J. Scheuer, W. M. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultra small modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005). [CrossRef]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  6. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  8. E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104(14), 147402 (2010). [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  10. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  11. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991). [CrossRef] [PubMed]
  12. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  13. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  14. E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” J. Lightwave Technol. 25(9), 2547–2562 (2007). [CrossRef]
  15. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  16. E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15(26), 17948–17953 (2007). [CrossRef] [PubMed]
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  18. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-1-4 . [CrossRef] [PubMed]
  19. S. E. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). [CrossRef]
  20. E. D. Palik, Handbook of optical constants of solids, 2'nd Ed. (San-Diego, Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1605 KB)     
» Media 2: MPG (2427 KB)     
» Media 3: MPG (2670 KB)     
» Media 4: MPG (1679 KB)     
» Media 5: MPG (2522 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited