OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25615–25626

Multicolor upconversion emissions in Tm3+/Er3+ codoped tellurite photonic microwire between silica fiber tapers

Nan-Kuang Chen, Pei-Wen Kuan, Junjie Zhang, Liyan Zhang, Lili Hu, Chinlon Lin, and Limin Tong  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25615-25626 (2010)
http://dx.doi.org/10.1364/OE.18.025615


View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report multicolor upconversion emissions including the blue-violet, green, and red lights in a Tm3+/Er3+ codoped tellurite glass photonic microwire between two silica fiber tapers. A silica fiber is tapered until its evanescent field is exposed and then angled-cleaved at the tapered center to divide the tapered fibers into two parts. A tellurite glass is melted by a gas flame to cluster into a sphere at the tip of one tapered fiber. The other angled-cleaved tapered fiber is blended into the melted tellurite glass. When the tellurite glass is melted, the two silica fiber tapers are simultaneously moving outwards to draw the tellurite glass into a microwire in between. The advantage of angled-cleaving on fiber tapers is to avoid cavity resonances in high index photonic microwire. Thus, the broadband white light can be transmitted between silica fibers and a special optical property like high intensity upconversion emission can be achieved. A cw 1064 nm Nd:YAG laser light is launched into the Tm3+/Er3+ codoped tellurite microwire through a silica fiber taper to generate the multicolor upconversion emissions, including the blue-violet, green, and red lights, simultaneously.

© 2010 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(160.2750) Materials : Glass and other amorphous materials
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 23, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: November 15, 2010
Published: November 23, 2010

Citation
Nan-Kuang Chen, Pei-Wen Kuan, Junjie Zhang, Liyan Zhang, Lili Hu, Chinlon Lin, and Limin Tong, "Multicolor upconversion emissions in Tm3+/Er3+ codoped tellurite photonic microwire between silica fiber tapers," Opt. Express 18, 25615-25626 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006). [CrossRef]
  2. S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007). [CrossRef] [PubMed]
  3. T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008). [CrossRef]
  4. J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010). [CrossRef]
  5. K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002). [CrossRef]
  6. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008). [CrossRef] [PubMed]
  7. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef]
  8. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005). [CrossRef] [PubMed]
  9. P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994). [CrossRef] [PubMed]
  10. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009). [CrossRef]
  11. T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009). [CrossRef] [PubMed]
  12. J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).
  13. H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998). [CrossRef]
  14. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  15. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009). [CrossRef]
  16. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chaps. 2 and 4.
  17. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  18. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006). [CrossRef] [PubMed]
  19. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993). [CrossRef]
  20. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  21. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009). [CrossRef] [PubMed]
  22. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008). [PubMed]
  23. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006). [CrossRef] [PubMed]
  24. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  25. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006). [CrossRef] [PubMed]
  26. C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007). [CrossRef] [PubMed]
  27. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  28. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007). [CrossRef] [PubMed]
  29. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007). [CrossRef] [PubMed]
  30. A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990). [CrossRef]
  31. E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002). [CrossRef]
  32. S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005). [CrossRef] [PubMed]
  33. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009). [CrossRef] [PubMed]
  34. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  35. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010). [CrossRef] [PubMed]
  36. Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009). [CrossRef] [PubMed]
  37. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982). [CrossRef]
  38. D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005). [CrossRef]
  39. A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005). [CrossRef]
  40. G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003). [CrossRef]
  41. D. Michael, and C. Brian, “Amplification device utilizing thulium doped modified silicate optical fiber,” US patent 6924928 (2005).
  42. S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited