OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25665–25676

Optical forces in nanowire pairs and metamaterials

Rongkuo Zhao, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25665-25676 (2010)
http://dx.doi.org/10.1364/OE.18.025665


View Full Text Article

Enhanced HTML    Acrobat PDF (2059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the optical force arising when isolated gold nanowire pairs and metamaterials with a gold nanowire pair in the unit cell are illuminated with laser radiation. Firstly, we show that isolated nanowire pairs are subject to much stronger optical forces than nanospheres due to their stronger electric and magnetic dipole resonances. We also investigate the properties of the optical force as a function of the length of the nanowires and of the distance between the nanowires. Secondly, we study the optical force in a metamaterial that consists of a periodic array of nanowire pairs. We show that the ratio of the size of the unit cell to the length of the nanowires determines whether the electric dipole resonance leads to an attractive or a repulsive force, and we present the underlying physical mechanism for this effect.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: September 22, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 12, 2010
Published: November 23, 2010

Citation
Rongkuo Zhao, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis, "Optical forces in nanowire pairs and metamaterials," Opt. Express 18, 25665-25676 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873).
  2. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  3. S. Chu, "Nobel lecture: The manipulation of neutral particles," Rev. Mod. Phys. 70, 685-706 (1998). [CrossRef]
  4. C. Cohen-Tannoudji, "Nobel lecture: Manipulating atoms with photons," Rev. Mod. Phys. 70, 707-719 (1998). [CrossRef]
  5. W. D. Phillips, "Nobel lecture: Laser cooling and trapping of neutral atoms," Rev. Mod. Phys. 70, 721-741 (1998). [CrossRef]
  6. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic circuits," Nature 456, 480-484 (2008). [CrossRef]
  7. D. Van Thourhout, and J. Roels, "Optomechanical device actuation through the optical gradient force," Nat. Photonics 4, 211-217 (2010). [CrossRef]
  8. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005). [CrossRef] [PubMed]
  9. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, "Controlling photonic structures using optical forces," Nature 462, 633-636 (2009). [CrossRef]
  10. T. J. Kippenberg, and K. J. Vahala, "Cavity optomechanics: Back-action at the mesoscale," Science 321, 1172-1176 (2008). [CrossRef] [PubMed]
  11. A. J. Hallock, P. L. Redmond, and L. E. Brus, "Optical forces between metallic particles," Proc. Natl. Acad. Sci. U.S.A. 102, 1280-1284 (2005). [CrossRef] [PubMed]
  12. P. Chu, and D. L. Mills, "Laser-induced forces in metallic nanosystems: The role of plasmon resonances," Phys. Rev. Lett. 99, 127401 (2007). [CrossRef] [PubMed]
  13. C. Rockstuhl, and H. P. Herzig, "Wavelength-dependent optical force on elliptical silver cylinders at plasmon resonance," Opt. Lett. 29, 2181-2183 (2004). [CrossRef] [PubMed]
  14. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005). [CrossRef]
  15. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  16. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  18. D. R. Smith, W. J. Padilla, D. C. Vier, D. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  19. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the electric resonance of split-ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004). [CrossRef]
  20. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004). [CrossRef] [PubMed]
  21. J. Garcia-Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelink, "On the resonances and polarizabilities of split-ring resonators," J. Appl. Phys. 98, 033103 (2005). [CrossRef]
  22. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  23. G. Dolling, C. Enkrich, M. Wegener, and C. M. Soukoulis, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005). [CrossRef] [PubMed]
  24. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  25. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  26. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, "Single particle plasmon spectroscopy of silver nanowires and gold nanorods," Nano Lett. 8, 3200-3204 (2008). [CrossRef]
  27. H.-S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, "Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials," Langmuir 24, 13833-13837 (2008). [CrossRef] [PubMed]
  28. J. Zhou, E. N. Economou, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006). [CrossRef] [PubMed]
  29. P. Gay-Balmaz, and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002). [CrossRef]
  30. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express 16, 18131-18144 (2008). [CrossRef] [PubMed]
  31. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  32. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Express 17, 5595-5605 (2009). [CrossRef] [PubMed]
  33. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "A metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  34. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited