OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25693–25701

Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

Sahand Mahmoodian, Andrey A. Sukhorukov, Sangwoo Ha, Andrei V. Lavrinenko, Christopher G. Poulton, Kokou B. Dossou, Lindsay C. Botten, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25693-25701 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: September 21, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: November 20, 2010
Published: November 23, 2010

Sahand Mahmoodian, Andrey A. Sukhorukov, Sangwoo Ha, Andrei V. Lavrinenko, Christopher G. Poulton, Kokou B. Dossou, Lindsay C. Botten, Ross C. McPhedran, and C. M. de Sterke, "Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges," Opt. Express 18, 25693-25701 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, "Sub-femtojoule all-optical switching using a photonic-crystal nanocavity," Nat. Photonics 4, 477-483 (2010). [CrossRef]
  2. J. Vuckovic, and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374-2376 (2003). [CrossRef]
  3. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009). [CrossRef] [PubMed]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  5. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  6. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  7. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008). [CrossRef]
  8. S. Tomljenovic Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  9. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express 16, 6331-6339 (2008). [CrossRef] [PubMed]
  10. T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006). [CrossRef]
  11. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  12. M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, "Microcavity confinement based on an anomalous zero group-velocity waveguide mode," Opt. Lett. 30, 552-554 (2005). [CrossRef] [PubMed]
  13. A. Figotin, and I. Vitebskiy, "Slow-wave resonance in periodic stacks of anisotropic layers," Phys. Rev. A 76, 053839 (2007). [CrossRef]
  14. A. A. Chabanov, "Strongly resonant transmission of electromagnetic radiation in periodic anisotropic layered media," Phys. Rev. A 77, 033811 (2008). [CrossRef]
  15. K. Y. Jung, and F. L. Teixeira, "Numerical study of photonic crystals with a split band edge: Polarization dependence and sensitivity analysis," Phys. Rev. A 78, 043826 (2008). [CrossRef]
  16. S. Ha, A. A. Sukhorukov, A. V. Lavrinenko, and Yu. S. Kivshar, "Cavity mode control in side-coupled periodic waveguides: theory and experiment," Photonics Nanostruct.: Fundam. Appl. 8, 310-317 (2010). [CrossRef]
  17. S. Mahmoodian, C. G. Poulton, K. B. Dossou, R. C. McPhedran, L. C. Botten, and C. M. de Sterke, "Modes of Shallow Photonic Crystal Waveguides: Semi-Analytic Treatment," Opt. Express 17, 19629-19643 (2009). [CrossRef] [PubMed]
  18. J. M. Luttinger, and W. Kohn, "Motion of electrons and holes in perturbed periodic fields," Phys. Rev. 97, 869-883 (1955). [CrossRef]
  19. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  20. P. St, J. Russell, T. A. Birks, and F. D. Lloyd Lucas, "Photonic Bloch waves and photonic band gaps," in Confined Electrons and Photons, E. Burstein and C. Weisbuch, eds., (1995), pp. 585-633.
  21. S. W. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, A. V. Lavrinenko, D. N. Chigrin, and Yu. S. Kivshar, "Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers," Opt. Express 16, 1104-1114 (2008). [CrossRef] [PubMed]
  22. M. W. Lee, C. Grillet, S. Tomljenovic Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D. Y. Choi, D. A. P. Bulla, and B. Luther-Davies, "Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals," Opt. Lett. 34, 3671-3673 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited