OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25712–25725

Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography

David Stifter, Elisabeth Leiss-Holzinger, Zoltan Major, Bernhard Baumann, Michael Pircher, Erich Götzinger, Christoph K. Hitzenberger, and Bettina Heise  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25712-25725 (2010)
http://dx.doi.org/10.1364/OE.18.025712


View Full Text Article

Enhanced HTML    Acrobat PDF (1914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By combining dynamic mechanical testing with spectral-domain polarization-sensitive optical coherence tomography (SD-PS-OCT) performed at 1550 nm we are able to directly investigate for the first time changes within scattering technical materials during tensile and fracture tests. Spatially and temporally varying polarization patterns, due to defects and material inhomogeneities, were observed within bulk polymer samples and used to finally obtain – with the help of advanced image processing algorithms – quantitative maps of the evolving internal stress distribution. Furthermore, locally increased stress within fiber-reinforced composite materials was identified in situ with SD-PS-OCT to cause depolarizing sites of fiber-matrix debonding prior the onset of complete structural failure.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 28, 2010
Revised Manuscript: November 14, 2010
Manuscript Accepted: November 14, 2010
Published: November 23, 2010

Citation
David Stifter, Elisabeth Leiss-Holzinger, Zoltan Major, Bernhard Baumann, Michael Pircher, Erich Götzinger, Christoph K. Hitzenberger, and Bettina Heise, "Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography," Opt. Express 18, 25712-25725 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. R. Hee, D. Huang, and E. A. Swanson, “J. G. and Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992). [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997). [CrossRef] [PubMed]
  4. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007). [CrossRef]
  5. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34(1), 59–69 (2000). [CrossRef]
  6. M. G. Ducros, J. F. de Boer, H. E. Huang, L. C. Chao, Z. P. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999). [CrossRef]
  7. J. F. De Boer, S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson, “Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography,” Opt. Express 3(6), 212–218 (1998). [CrossRef] [PubMed]
  8. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical coherence tomography imaging techniques for the study of articular cartilage,” J. Appl. Phys . 105, 102041–1 - 102041–11 (2009). [CrossRef]
  9. D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003). [CrossRef]
  10. J.-T. Oh and S.-W. Kim, “Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites,” Opt. Express 11(14), 1669–1676 (2003). [CrossRef] [PubMed]
  11. K. Wiesauer, A. D. Sanchis Dufau, E. Götzinger, M. Pircher, C. K. Hitzenberger, and D. Stifter, “Non-destructive quantification of internal stress in polymer materials by polarisation sensitive optical coherence tomography,” Acta Mater. 53, 2785–2791 (2005). [CrossRef]
  12. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006). [CrossRef] [PubMed]
  13. K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass-fibre reinforced polymers by polarization-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007). [CrossRef]
  14. J. S. Chen and Y. K. Huang, “Full-field mapping of stress-induced birefringence using a polarized low coherence interference microscope,” Proc. SPIE 7133, 7133I–1 (2009).
  15. B. Heise, K. Wiesauer, E. Götzinger, M. Pircher, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Grützner, and D. Stifter, “Spatially resolved stress measurements in materials with polarization-sensitive optical coherence tomography: image acquisition and processing aspects,” Strain 46, 61–68 (2010). [CrossRef]
  16. K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications. (Springer, 2000).
  17. Q. D. Liu, N. A. Fleck, J. E. Huber, and D. P. Chu, “Birefringence measurements of creep near an electrode tip in transparent PLZT,” J. Eur. Ceram. Soc. 29, 2289–2296 (2009). [CrossRef]
  18. M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).
  19. P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57–59 (2008). [CrossRef]
  20. G. Gülker, K. D. Hinsch, and A. Kraft, “Deformation monitoring on ancient terracotta warriors by microscopic TV-holography,” Opt. Lasers Eng. 36, 501–512 (2001). [CrossRef]
  21. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998). [CrossRef] [PubMed]
  22. M. H. De la Torre-Ibarra, P. D. Ruiz, and J. M. Huntley, “Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography,” Opt. Express 14(21), 9643–9656 (2006). [CrossRef] [PubMed]
  23. M. H. De la Torre Ibarra, P. D. Ruiz, and J. M. Huntley, “Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography,” Opt. Lett. 34(6), 806–808 (2009). [CrossRef] [PubMed]
  24. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  25. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  26. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  27. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  28. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001). [CrossRef] [PubMed]
  29. S. Wu, “Phase structure and adhesion in polymer blends: A criterion for rubber toughening,” Polymer (Guildf.) 26, 1855–1863 (1985). [CrossRef]
  30. P. A. Tzaika, M. C. Boyce, and D. M. Parks, “Micromechanics of deformation in particle toughened Polyamides,” J. Mech. Phys. Solids 48, 1893–1929 (2000). [CrossRef]
  31. e.g.: R. J. Young, and P. A. Lovell, Introduction to Polymers (Chapman & Hall, 1991).
  32. J. W. Goodman, “Random phasor sums,” in Speckle phenomena in optics (Roberts and Comp., Englewood, 2007), 7–25.
  33. J. Weickert, “Coherence-enhancing diffusion filtering,” Int. J. Comput. Vis. 31, 111–127 (1999). [CrossRef]
  34. C. Damerval, S. Mignen, and V. Perrier, “A Fast Algorithm for Bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005). [CrossRef]
  35. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18(8), 1862–1870 (2001). [CrossRef]
  36. T. Bülow, D. Pallek, and G. Sommer, “Riesz Transforms for the Isotropic Estimation of the Local Phase of Moiré Interferograms”, Mustererkennung2000, ed., G. Sommer et al. (Springer Verlag, Berlin, DAGM 2000), 333–340.
  37. M. Felsberg and G. Sommer, “The monogenic signal,” IEEE Trans. Signal Process. 49, 3136–3144 (2001). [CrossRef]
  38. K. G. Larkin, “Uniform estimation of orientation using local and nonlocal 2-D energy operators,” Opt. Express 13(20), 8097–8121 (2005). [CrossRef] [PubMed]
  39. B. Jähne, Digital Image Processing, (Springer, Heidelberg-Berlin, 2002).
  40. J. Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, (Teubner, Stuttgart, 1998)
  41. D. C. Ghiglia, and M. D. Pritt, Two-dimensional Phase Unwrapping, (Wiley, New York, 1998).
  42. B. G. Zagar, B. Arminger, and B. Heise, “Comparison of Various Algorithms for Phase Unwrapping in Optical Phase Microscopy,” IEEE Proc. IMTC Warsaw, Poland (2007).
  43. B. Hofmann, Mathematik inverser Probleme (Teubner, Stuttgart-Leipzig, 1999).
  44. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29(20), 2402–2404 (2004). [CrossRef] [PubMed]
  45. S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 29(17), 2025–2027 (2004). [CrossRef] [PubMed]
  46. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander Iii, and T. E. Milner, “Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT),” Opt. Express 13(12), 4507–4518 (2005). [CrossRef] [PubMed]
  47. K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Grützner, R. Oster, and D. Stifter, “Ultrahigh-resolution transversal polarization-sensitive optical coherence tomography: structural analysis and strain-mapping,” in: Fracture of Nano and Engineering Materials and Structures, E.E. Gdoutos, ed., (Springer, 2006).
  48. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1356 KB)     
» Media 2: MOV (3168 KB)     
» Media 3: MOV (927 KB)     
» Media 4: MOV (1067 KB)     
» Media 5: MOV (1043 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited