OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25726–25737

Fast gain recovery rates with strong wavelength dependence in a non-linear SOA

Ciaran S. Cleary, Mark J. Power, Simon Schneider, Roderick P. Webb, and Robert J. Manning  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25726-25737 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

© 2010 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optical Devices

Original Manuscript: September 29, 2010
Revised Manuscript: November 5, 2010
Manuscript Accepted: November 5, 2010
Published: November 23, 2010

Ciaran S. Cleary, Mark J. Power, Simon Schneider, Roderick P. Webb, and Robert J. Manning, "Fast gain recovery rates with strong wavelength dependence in a non-linear SOA," Opt. Express 18, 25726-25737 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999). [CrossRef] [PubMed]
  2. W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008). [CrossRef] [PubMed]
  3. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002). [CrossRef]
  4. R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006). [CrossRef]
  5. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998). [CrossRef]
  6. R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000). [CrossRef]
  7. L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003). [CrossRef]
  8. A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992). [CrossRef]
  9. R. Giller, R. Manning, and D. Cotter, “Recovery Dynamics of the'Turbo-Switch',” Optical Amplifiers and Their Applications (Optical Society of America), paper OTuC, Whistler (2006).
  10. J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003). [CrossRef]
  11. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994). [CrossRef] [PubMed]
  12. R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001). [CrossRef]
  13. J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993). [CrossRef]
  14. G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005). [CrossRef]
  15. H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).
  16. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007). [CrossRef]
  17. B. M. K. Stubkjaer, T. Durhuus, G. G. Joergensen, C. Joergensen, T. N. Nielsen, B. Fernier, P. Doussiere, D. Leclerc, and J. Benoit, “Semiconductor optical amplifiers as linear amplifiers, gates and wavelength converters,” in Proc. European Conference on Optical Communications (Zurich, 1993).
  18. J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993). [CrossRef]
  19. R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994). [CrossRef]
  20. R. Manning, X. Yang, R. Webb, R. Giller, F. Gunning, and A. Ellis, “The'Turbo-Switch'-a novel technique to increase the high-speed response of SOAs for wavelength conversion,” presented at Optical Fiber Communication Conference (Optical Society of America), paper OWS8, Anaheim (2006).
  21. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998). [CrossRef]
  22. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006). [CrossRef]
  23. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” (IEEE, 2009), pp. 1–2.
  24. K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990). [CrossRef]
  25. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992). [CrossRef]
  26. M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).
  27. J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008). [CrossRef]
  28. G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003). [CrossRef]
  29. G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003). [CrossRef]
  30. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000). [CrossRef]
  31. P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited