OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25746–25756

Dispersion characteristics of silicon nanorod based carpet cloaks

Venkata A. Tamma, John Blair, Christopher J. Summers, and Wounjhang Park  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25746-25756 (2010)
http://dx.doi.org/10.1364/OE.18.025746


View Full Text Article

Enhanced HTML    Acrobat PDF (1905 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wide range of transformation media designed with conformal mapping are currently being studied extensively due to their favorable properties: isotropy, moderate index requirements, low loss and broad bandwidth. For optical frequency operation, the transformation media are commonly fabricated on high index semiconductor thin films. These 2D implementations, however, inevitably introduces waveguide dispersion, which affects the bandwidth and loss behavior. In this paper, for carpet cloaks implemented by a silicon nanorod array, we have confirmed that waveguide dispersion limits the bandwidth of the transformation medium by direct visualizing the cut-off conditions with near-field scanning optical microscopy (NSOM). Furthermore, we have experimentally demonstrated the extension of cut-off wavelength by depositing a conformal dielectric layer. This study illustrates the constraints on the 2D transformation media imposed by the waveguide dispersion and suggests a general technique to tune and modify their optical properties.

© 2010 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: October 6, 2010
Revised Manuscript: November 4, 2010
Manuscript Accepted: November 5, 2010
Published: November 23, 2010

Citation
Venkata A. Tamma, John Blair, Christopher J. Summers, and Wounjhang Park, "Dispersion characteristics of silicon nanorod based carpet cloaks," Opt. Express 18, 25746-25756 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  2. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  3. G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  7. P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008). [CrossRef]
  8. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008). [CrossRef]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  10. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  14. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  15. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef]
  16. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010). [CrossRef] [PubMed]
  17. M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010). [CrossRef]
  18. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010). [CrossRef]
  19. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008). [CrossRef]
  20. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009). [CrossRef] [PubMed]
  21. T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010). [CrossRef] [PubMed]
  22. J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010). [CrossRef]
  23. J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003). [CrossRef]
  24. D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited