OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25757–25770

Energy scalability of mode-locked oscillators: a completely analytical approach to analysis

V. L. Kalashnikov and A. Apolonski  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25757-25770 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A completely analytical approach to analysis of energy-scalable ultrashort-pulse oscillators operating in both normal- and anomalous-dispersion regimes is developed. The theory, based on the approximated solutions of the generalized complex nonlinear Ginzburg-Landau equation allows the problem to be reduced to a purely algebraic model, so that the oscillator characteristics are easy to trace and are completely characterized by only two parameters defining the so-called master diagram of the pulse energy scalability. The proposed theory covers all types of energy-scalable oscillators: all-normal-dispersion fiber, chirped-pulse and thin-disk solid-state ones and is validated by numerical simulations.

© 2010 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 5, 2010
Revised Manuscript: November 15, 2010
Manuscript Accepted: November 16, 2010
Published: November 23, 2010

Vladimir L. Kalashnikov and Alexander Apolonski, "Energy scalability of mode-locked oscillators: a completely analytical approach to analysis," Opt. Express 18, 25757-25770 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006). [CrossRef]
  2. T. Südmeyer, S. V. Marchese, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2, 599–604 (2008). [CrossRef]
  3. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008). [CrossRef] [PubMed]
  4. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and Th. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008). [CrossRef] [PubMed]
  5. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bunting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33, 1608–1610 (2008). [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtoseond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef] [PubMed]
  7. S. Lefrancois, Kh. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett. 35, 1569–1571 (2010). [CrossRef] [PubMed]
  8. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” N. J. Phys. 7, 216 (2005). [CrossRef]
  9. E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picqué, and I. T. Sorokina, “Cr4+:YAG chirpedpulse oscillator,” N. J. Phys. 10, 083022 (2008). [CrossRef] [PubMed]
  10. Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and Th. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005). [CrossRef] [PubMed]
  11. Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008). [CrossRef]
  12. N. N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons: From Optics to Biology and Medicine. (Springer-Verlag, Berlin, Heidelberg, 2008).
  13. E. Podivilov, and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005). [CrossRef]
  14. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators. Theory and comparison with experiment,” N. J. Phys. 7, 217 (2005). [CrossRef]
  15. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006). [CrossRef]
  16. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  17. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008). [CrossRef]
  18. V. L. Kalashnikov, “The unified theory of chirped-pulse oscillators,” Proc. SPIE Nonlinear Opt. Appl. III, Vol. 7354, Mario Bertolotti, Ed., p. 73540T (also arXiv:0903.5396 physics.optics]) (2009).
  19. V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 046606 (2009). [CrossRef]
  20. V. L. Kalashnikov, and A. Apolonski, “Chirped-pulse oscillators: A unified standpoint,” Phys. Rev. A 79, 043829 (2009). [CrossRef]
  21. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009). [CrossRef]
  22. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010). [CrossRef]
  23. D. Anderson, M. Lisak, and A. Berntson, “A variational approach to nonlinear equations in optics,” Pramana J. Phys. 57, 917–936 (2001). [CrossRef]
  24. J. G. Caputo, N. Flytzanis, and M. P. Sørensen, “Ring laser configuration studied by collective coordinates,” J. Opt. Soc. Am. B 12, 139–145 (1995). [CrossRef]
  25. S. Ch. Cerda, S. B. Cavalvanti, and J. M. Hickmann, “A variational approach of nonlinear dissipative pulse propagation,” Eur. Phys. J. D 1, 313–316 (1998). [CrossRef]
  26. Ch. Jirauschek, and F. X. Kärtner, “Gaussian pulse dynamics in gain media with Kerr nonlinearity,” J. Opt. Soc. Am. B 23, 1776–1784 (2006). [CrossRef]
  27. C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007). [CrossRef] [PubMed]
  28. B. G. Bale, and J. N. Kutz, “Variational method for mode-locked lasers,” J. Opt. Soc. Am. B 25, 1193–1202 (2008). [CrossRef]
  29. N. N. Akhmediev, and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman&Hall, London, 1997).
  30. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy modelocking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763–1770 (2008). [CrossRef]
  31. B. G. Bale, S. Boscolo, and S. K. Turitsyn, “Dissipative dispersion-managed solitons in mode-locked lasers,” Opt. Lett. 34, 3286–3288 (2009). [CrossRef] [PubMed]
  32. H. A. Haus, “A theory of fast saturable absorber modelocking,” J. Appl. Phys. 46, 3049 (1975). [CrossRef]
  33. H. A. Haus, and Y. Silberberg, “Theory of mode locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985). [CrossRef]
  34. The Wolfram Mathematica 7 notebook is accessible at http://info.tuwien.ac.at/kalashnikov/variational.html.
  35. K. E. Oughstun, Electromagmetic and Optical Pulse Propagation 1 (Springer, NY, 2006).
  36. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
  37. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003). [CrossRef]
  38. F. Krausz, M. E. Fermann, Th. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992). [CrossRef]
  39. A. K. Komarov, and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183, 265–270 (2000). [CrossRef]
  40. S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B 76, 1–11 (2003). [CrossRef]
  41. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Mechanisms of spectral shift in ultrashort-pulse laser oscillators,” J. Opt. Soc. Am. B 18, 1732–1741 (2001). [CrossRef]
  42. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 269, 156–165 (2007). [CrossRef]
  43. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008). [CrossRef]
  44. S. Lefrancois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett. 35, 1569–1571 (2010). [CrossRef] [PubMed]
  45. M. Siegel, G. Palmer, M. Emons, M. Schutze, A. Ruehl, and U. Morgner, “Pulsing dynamics in Ytterbium based chirped-pulse oscillators,” Opt. Express 16, 14314–14320 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited