OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25786–25793

Atomic vapor quantum memory for a photonic polarization qubit

Young-Wook Cho and Yoon-Ho Kim  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25786-25793 (2010)
http://dx.doi.org/10.1364/OE.18.025786


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental realization of an atomic vapor quantum memory for the photonic polarization qubit. The performance of the quantum memory for the polarization qubit, realized with electromagnetically-induced transparency in two spatially separated ensembles of warm Rubidium atoms in a single vapor cell, has been characterized with quantum process tomography. The process fidelity better than 0.91 for up to 16 μs of storage time has been achieved.

© 2010 Optical Society of America

OCIS Codes
(210.4680) Optical data storage : Optical memories
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 10, 2010
Revised Manuscript: October 12, 2010
Manuscript Accepted: November 20, 2010
Published: November 24, 2010

Citation
Young-Wook Cho and Yoon-Ho Kim, "Atomic vapor quantum memory for a photonic polarization qubit," Opt. Express 18, 25786-25793 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135 (2007). [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46 (2001). [CrossRef] [PubMed]
  3. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long distance quantum communication with atomic ensembles and linear optics," Nature 414, 413 (2001). [CrossRef] [PubMed]
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, "Optical quantum memory," Nat. Photonics 3, 706 (2009). [CrossRef]
  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: optics in coherent media," Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  6. M. Fleischhauer, and M. D. Lukin, "Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094 (2000). [CrossRef] [PubMed]
  7. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783 (2001). [CrossRef] [PubMed]
  8. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833 (2005). [CrossRef] [PubMed]
  9. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837 (2005). [CrossRef] [PubMed]
  10. K. Akiba, K. Kashiwagi, T. Yonehara, and M. Kozuma, "Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process," N. J. Phys. 11, 013049 (2009). [CrossRef]
  11. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, "Quantum memory for squeezed light," Phys. Rev. Lett. 100, 093602 (2008). [CrossRef] [PubMed]
  12. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, "Storage and Retrieval of a squeezed vacuum," Phys. Rev. Lett. 100, 093601 (2008). [CrossRef] [PubMed]
  13. Y.-W. Cho, and Y.-H. Kim, "Storage and retrieval of thermal light in warm atomic vapor," Phys. Rev. A 82, 033830 (2010). [CrossRef]
  14. D. N. Matsukevich, and A. Kuzmich, "Quantum state transfer between matter and light," Science 306, 663 (2004). [CrossRef] [PubMed]
  15. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, "Mapping photonic entanglement into and out of a quantum memory," Nature 452, 67 (2008). [CrossRef] [PubMed]
  16. H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, "Heralded Single-Magnon Quantum Memory for Photon Polarization States," Phys. Rev. Lett. 103, 043601 (2009). [CrossRef] [PubMed]
  17. The optical depth d is defined as the off-resonant transmittance, exp(−d), of the EIT spectrum. The experiment was done with a relatively ‘thin’ optical medium to avoid unwanted four-wave mixing processes which could occur at higher optical depth, see Ref. [18]. It should be easier to work with a greater optical depth for Rubidium 87 as the ground state hyperfine splitting is much larger than that of Rubidium 85.
  18. N. B. Phillips, A. V. Gorshkov, and I. Novikova, "Optimal light storage in atomic vapor," Phys. Rev. A 78, 023801 (2008). [CrossRef]
  19. M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davison, "Anglular dependence of Dicke-narrowed electromagnetically induced transparency resonances," Phys. Rev. A 76, 023813 (2007). [CrossRef]
  20. E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, "Decoherence of electromagnetically induced transparency in atomic vapor," Opt. Lett. 31, 2625 (2006). [CrossRef] [PubMed]
  21. Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, "Reversing the weak quantum measurement for a photonic qubit," Opt. Express 17, 11978 (2009). [CrossRef] [PubMed]
  22. Y.-H. Kim, S. P. Kulik, and Y. Shih, "Quantum teleportation of a polarization state with a complete bell state measurement," Phys. Rev. Lett. 86, 1370 (2001). [CrossRef] [PubMed]
  23. D. Höckel, E. Martin, and O. Benson, "Note: An ultranarrow bandpass filter system for single-photon experiments in quantum optics," Rev. Sci. Instrum. 81, 026108 (2010). [CrossRef] [PubMed]
  24. S. Manz, T. Fernholz, J. Schmiedmayer, and J.-W. Pan, "Collisional decoherence during wring and reading quantum states," Phys. Rev. A 75, 040101 (2007). [CrossRef]
  25. S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, "Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell," Phys. Rev. A 80, 062303 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited