OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25833–25838

Interplay of four-wave mixing processes with a mixed coherent-incoherent pump

Jochen Schröder, Anne Boucon, Stéphane Coen, and Thibaut Sylvestre  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25833-25838 (2010)
http://dx.doi.org/10.1364/OE.18.025833


View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate the existence of multiple, simultaneous, independent four-wave mixing processes in optical fibers. In particular we observe competition between phase-matched and non-phase-matched processes involving the same mixed coherent-incoherent pump. Further investigation reveals that narrow-band degenerate four-wave mixing with an incoherent pump can lead to efficient wavelength conversion.

© 2010 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 20, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 16, 2010
Published: November 24, 2010

Citation
Jochen Schroder, Anne Boucon, Stephane Coen, and Thibaut Sylvestre, "Interplay of four-wave mixing processes with a mixed coherent-incoherent pump," Opt. Express 18, 25833-25838 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974). [CrossRef]
  2. A. C. Sodre, J. M. C. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008). [CrossRef]
  3. D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, “Dynamical evolution of multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 4757–4774 (1998). [CrossRef]
  4. G. Millot, “Multiple four-wave mixing-induced modulational instability in highly birefringent fibers,” Opt. Lett. 26, 1391–1393 (2001). [CrossRef]
  5. G. Cappellini, and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8, 824–838 (1991). [CrossRef]
  6. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007). [CrossRef] [PubMed]
  7. S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002). [CrossRef]
  8. Y. Chen, and A. W. Snyder, “Four-photon parametric mixing in optical fibers: effect of pump depletion,” Opt. Lett. 14, 87–89 (1989). [CrossRef] [PubMed]
  9. R. Stolen, and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982). [CrossRef]
  10. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  11. M. Islam, and O. Boyraz, “Fiber parametric amplifiers for wavelength band conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002). [CrossRef]
  12. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21, 1354 (1996). [CrossRef] [PubMed]
  13. S. Coen, and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39–41 (2001). [CrossRef]
  14. J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006). [CrossRef]
  15. J. Schr¨oder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006). [CrossRef] [PubMed]
  16. R. K. Jain, and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984). [CrossRef]
  17. J. R. Thompson, and R. Roy, “Multiple four-wave mixing process in an optical fiber,” Opt. Lett. 16, 557–559 (1991). [CrossRef] [PubMed]
  18. J. R. Thompson, and R. Roy, “Nonlinear dynamics of multiple four-wave mixing processes in a single-mode fiber,” Phys. Rev. A 43, 4987–4996 (1991). [CrossRef] [PubMed]
  19. S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994). [CrossRef] [PubMed]
  20. X. Liu, X. Zhou, and C. Lu, “Multiple four-wave mixing self-stability in optical fibers,” Phys. Rev. A 72, 013811 (2005). [CrossRef]
  21. C. J. McKinstrie, and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006). [CrossRef] [PubMed]
  22. E. Lantz, D. Gindre, H. Maillotte, and J. Monneret, “Phase matching for parametric amplification in a singlemode birefringent fiber: influence of the non-phase-matched waves,” J. Opt. Soc. Am. B 14, 116–125 (1997). [CrossRef]
  23. T. Sylvestre, H. Maillotte, E. Lantz, and P. T. Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999). [CrossRef]
  24. Y. S. Jang, and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrumsliced fiber amplifier light source,” IEEE Photon. Technol. Lett. 10, 218–220 (1998). [CrossRef]
  25. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, “Incoherent modulation instability in instantaneous nonlinear Kerr media,” Opt. Lett. 30, 2143–2145 (2005). [CrossRef] [PubMed]
  26. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers,” Opt. Express 14, 2873–2879 (2006). [CrossRef] [PubMed]
  27. J. M. Ch’avez Boggio, and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24, 2046–2054 (2007). [CrossRef]
  28. Y. Q. Xu, and S. G. Murdoch, “Gain spectrum of an optical parametric amplifier with a temporally incoherent pump,” Opt. Lett. 35, 169–171 (2010). [CrossRef] [PubMed]
  29. Y. Q. Xu, and S. G. Murdoch, “Gain statistics of a fiber optical parametric amplifier with a temporally incoherent pump,” Opt. Lett. 35, 826–829 (2010). [CrossRef] [PubMed]
  30. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef] [PubMed]
  31. M. Marhic, K.-Y. Wong, and L. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133–1141 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited