OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25839–25846

Efficient two-step up-conversion by quantum-correlated photon pairs

Hisaki Oka  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25839-25846 (2010)
http://dx.doi.org/10.1364/OE.18.025839


View Full Text Article

Enhanced HTML    Acrobat PDF (3431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the sequential two-step up-conversion of correlated photon pairs with positive and negative energy correlations, in terms of how the up-conversion efficiency depends on the incident pulse delay. A three-level atomic system having a metastable state is used to evaluate the up-conversion efficiency. It is shown that a photon pair with a positive energy correlation can drastically enhance the up-conversion efficiency compared with uncorrelated photons and correlated photons with a negative energy correlation.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.4180) Quantum optics : Multiphoton processes
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

History
Original Manuscript: September 21, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 5, 2010
Published: November 24, 2010

Citation
Hisaki Oka, "Efficient two-step up-conversion by quantum-correlated photon pairs," Opt. Express 18, 25839-25846 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kapoor, C. S. Friend, A. Biswas, and P. N. Prasad, "Highly efficient infrared-to-visible energy upconversion in Er3+:Y2O3," Opt. Lett. 25, 338-340 (2000). [CrossRef]
  2. F. Vetrone, J. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, "980 nm excited upconversion in an Er-doped ZnO-TeO2 glass," Appl. Phys. Lett. 80, 1752-1754 (2002). [CrossRef]
  3. A. Shalav, B. S. Richards, T. Trupke, P. Würfel, and H. U. Güdel, "Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response," Appl. Phys. Lett. 86, 013505 (2005). [CrossRef]
  4. C. V. Bennett, and B. H. Kolner, "Upconversion time microscope demonstrating 103 × magnification of femtosecond waveforms," Opt. Lett. 24, 783-785 (1999). [CrossRef]
  5. K. A. O’Donnell and A. B. U’Ren, "Time-resolved up-conversion of entangled photon pairs," Phys. Rev. Lett. 103, 123602 (2009). [CrossRef]
  6. J. Gea-Banacloche, "Two-photon absorption of nonclassical light," Phys. Rev. Lett. 62, 1603-1606 (1989). [CrossRef] [PubMed]
  7. J. Javanainen, and P. L. Gould, "Linear intensity dependence of a two-photon transition rate," Phys. Rev. A 41, 5088-5091 (1990). [CrossRef] [PubMed]
  8. N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, "Nonclassical excitation for atoms in a squeezed vacuum," Phys. Rev. Lett. 75, 3426-3429 (1995). [CrossRef] [PubMed]
  9. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, "Generating entangled two-photon states with coincident frequencies," Phys. Rev. Lett. 88, 183602 (2002).
  10. J. P. Torres, F. Macià, S. Carrasco, and L. Torner, "Engineering the frequency correlations of entangled two photon states by achromatic phase matching," Opt. Lett. 30, 314-316 (2005). [CrossRef] [PubMed]
  11. M. Hendrych, M. Micuda, and J. P. Torres, "Tunable control of the frequency correlations of entangled photons," Opt. Lett. 32, 2339-2341 (2007). [CrossRef] [PubMed]
  12. R. Shimizu, and K. Edamatsu, "High-flux and broadband biphoton sources with controlled frequency entanglement," Opt. Express 17, 16385-16393 (2009). [CrossRef] [PubMed]
  13. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, "Entanglement and four-wave mixing effects in the dissipation-free nonlinear interaction of two photons at a single atom," Phys. Rev. A 68, 043813 (2003). [CrossRef]
  14. M. Bixon, and J. Jortner, "Long radiative lifetimes of small molecules," J. Chem. Phys. 50, 3284-3290 (1969). [CrossRef]
  15. C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).
  16. See, for example,D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach Science, New York, 1988).
  17. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  18. We adopt the energies of an Er atom, 4I15/2, 4I11/2, 4I9/2, and 4F7/2 for |g〉, |mB〉, |mA〉, and |e〉, respectively. Further, we ignore influences of other energy levels for simplicity.
  19. H. Oka, "Efficient selective two-photon excitation by tailored quantum-correlated photons," Phys. Rev. A 81, 063819 (2010). [CrossRef]
  20. H. Oka, "Real-time analysis of two-photon excitation by correlated photons: Pulse-width dependence of excitation efficiency," Phys. Rev. A 81, 053837 (2010). [CrossRef]
  21. See, for example,D. A. Kalashnikov, K. G. Katamadze, and S. P. Kulik, "Controlling the spectrum of a two photon field: Inhomogeneous broadening due to a temperature gradient," JETP Lett. 89, 224-228 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited