OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25847–25854

Measurement of pressure dependent nonlinear refractive index of inert gases

Á. Börzsönyi, Z. Heiner, A.P. Kovács, M. P. Kalashnikov, and K. Osvay  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25847-25854 (2010)
http://dx.doi.org/10.1364/OE.18.025847


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of high intensity laser beams is excessively affected by optical nonlinear effects, thereby the knowledge of the nonlinear refractive indices of the beam guiding media is indispensable in the design of laser systems and experiments. Apart from undesired self-focusing, several areas of modern laser spectroscopy can utilize optical nonlinearity, from LiDAR measurements to filamentation. In this paper we report on a direct measurement of pressure dependent nonlinear refractive index of Ar, N2, Ne, Xe, and air between 0.05 mbar and 1 bar, based on the powerful technique called spectrally and spatially resolved interferometry. In this way the total value of nonlinear refractive index is measured, that is the sum of all elementary phenomena contributing to the intensity dependent refractivity of the gases.

© 2010 OSA

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 6, 2010
Revised Manuscript: November 6, 2010
Manuscript Accepted: November 6, 2010
Published: November 24, 2010

Citation
Á. Börzsönyi, Z. Heiner, A.P. Kovács, M. P. Kalashnikov, and K. Osvay, "Measurement of pressure dependent nonlinear refractive index of inert gases," Opt. Express 18, 25847-25854 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998). [CrossRef]
  2. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004). [CrossRef]
  3. T. A. Pitts, T. S. Luk, J. K. Gruetzner, T. R. Nelson, A. McPherson, S. M. Cameron, and A. C. Bernstein, “Propagation of self-focusing laser pulses in atmosphere: experiment versus numerical simulation,” J. Opt. Soc. Am. B 21, 2008–2016 (2004). [CrossRef]
  4. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986). [CrossRef] [PubMed]
  5. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009). [CrossRef]
  6. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett. 32(17), 2481–2483 (2007). [CrossRef] [PubMed]
  7. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004). [CrossRef]
  8. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97(2), 023904 (2006). [CrossRef] [PubMed]
  9. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005). [CrossRef] [PubMed]
  10. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006). [CrossRef]
  11. A. Couairon, J. Biegert, A. Heinrich, C. P. Hauri, W. Kornelis, P. Schlup, M. P. Anscombe, M. B. Gaarde, K. J. Schafer, and U. Keller, “Control of high-order harmonic emission using attosecond pulse trains,” J. Mod. Opt. 53(1-2), 87–96 (2006). [CrossRef]
  12. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007). [CrossRef]
  13. O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel’ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B 91(1), 35–43 (2008). [CrossRef]
  14. C. H. Lin, J. P. Heritage, T. K. Gustafson, R. Y. Chiao, and J. P. McTauge, “Birefringence arising from reorientation of polarizability anisptropy of molecules in collisionless gases,” Phys. Rev. A 13(2), 813–829 (1976). [CrossRef]
  15. R. W. Hellwarth, “3rd-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979). [CrossRef]
  16. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N-2, and O-2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997). [CrossRef]
  17. C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron. 46(4), 433–437 (2010). [CrossRef]
  18. M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  19. D. P. Shelton, “Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm,” Phys. Rev. A 42(5), 2578–2592 (1990). [CrossRef] [PubMed]
  20. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56(1), 67–72 (1985). [CrossRef]
  21. J. F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz, “Determination of the time dependence of n(2) in air,” Opt. Commun. 135(4-6), 310–314 (1997). [CrossRef]
  22. Y. Shimoji, A. T. Fay, R. S. F. Chang, and N. Djeu, “Direct measurement of the nonlinear refractive-index of air,” J. Opt. Soc. Am. B 6(11), 1994–1998 (1989). [CrossRef]
  23. J. Bernhardt, P. T. Simard, W. Liu, H. L. Xu, F. Theberge, A. Azarm, J. F. Daigle, and S. L. Chin, “Critical power for self-focusing of a femtosecond laser pulse in helium,” Opt. Commun. 281(8), 2248–2251 (2008). [CrossRef]
  24. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17(16), 13429–13434 (2009). [CrossRef] [PubMed]
  25. D. Milam and M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: Application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47(6), 2497–2501 (1976). [CrossRef]
  26. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17(16), 1131–1133 (1992). [CrossRef] [PubMed]
  27. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pépin, F. Vidal, and H. P. Mercure, “Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,” Opt. Lett. 25(8), 578–580 (2000). [CrossRef]
  28. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, “Single-shot measurement of temporal phase shifts by frequency-domain holography,” Opt. Lett. 25(10), 764–766 (2000). [CrossRef]
  29. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 81(22), 4124–4126 (2002). [CrossRef]
  30. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier, “Single-shot spectral interferometry with chirped pulses,” Opt. Lett. 26(20), 1612–1614 (2001). [CrossRef]
  31. K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides,” Phys. Plasmas 12(5), 056712 (2005). [CrossRef]
  32. Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg, “Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single-shot spectral interferometry,” Opt. Express 15(12), 7458–7467 (2007). [CrossRef] [PubMed]
  33. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006). [CrossRef]
  34. G. A. Mourou, C. L. Labaune, N. Naumova, and V. T. Tikhonchuk, “Relativistic laser-matter interaction: from attosecond pulse generation to fast ignition,” Plasma Phys. Contr. Fusion 49(12B), B667–B675 (2007). [CrossRef]
  35. J. Calatroni, C. Sainz, and A. L. Guerro, “Multi-channelled white-light interferometry for real-time dispersion measurements,” Opt. Commun. 157(1-6), 202–208 (1998). [CrossRef]
  36. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 (1995). [CrossRef] [PubMed]
  37. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008). [CrossRef] [PubMed]
  38. K. Osvay, K. Varju, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89(4), 565–572 (2007). [CrossRef]
  39. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008). [CrossRef]
  40. D. E. Adams, T. A. Planchon, J. A. Squier, C. G. Durfee, “Spatio-temporal characterization of nonlinear propagation of femtosecond pulses,” CLEO/QELS 2010 paper: CThDD5.
  41. K. Osvay, A. Borzsonyi, Z. Heiner, A. P. Kovács, M. P. Kalashnikov, “Measurement of pressure dependent nonlinear refractive index of inert gases,” CLEO/QELS 2009 paper: CMU7.
  42. M. Hatayama, A. Suda, M. Nurhuda, K. Nagasaka, and K. Midorikawa, “Spatiotemporal dynamics of high-intensity femtosecond laser pulses propagating in argon,” J. Opt. Soc. Am. B 20(3), 603–608 (2003). [CrossRef]
  43. A. Braun, S. Kane, and T. Norris, “Compensation of self-phase modulation in chirped-pulse amplification laser systems,” Opt. Lett. 22(9), 615–617 (1997). [CrossRef] [PubMed]
  44. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited