OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25861–25872

Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons

Gilad Rosenblatt, Eyal Feigenbaum, and Meir Orenstein  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25861-25872 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1653 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A circular zero-time-averaged power component, coupling the forward (dielectric) and backward (metal) power channels of Surface Plasmon Polaritons (SPPs), is shown to be the core ingredient for the slow-light characteristic of SPPs at the surface plasmon frequency, for both a lossless and lossy metal. Additional slow-light regimes emerging in configurations where few SPPs are strongly coupled, such as in a narrow plasmonic gap and slab, forming local extrema of the dispersion curve (branch points for positive and negative index branches), are also propelled by the circular motion of the plasmonic power.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: August 23, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 28, 2010
Published: November 25, 2010

Gilad Rosenblatt, Eyal Feigenbaum, and Meir Orenstein, "Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons," Opt. Express 18, 25861-25872 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  2. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007). [CrossRef]
  3. M. Orenstein, “Slow Light by Slow Waves: Plasmonics for Light Halting,” Topical Meeting on Slow and Fast Light 2007, Salt-Lake City Utah, USA (2007).
  4. A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006). [CrossRef] [PubMed]
  5. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  6. A. A. Oliner and T. Tamir, “Backward waves on Isotropic Plasma Slabs,” J. Appl. Phys. 33(1), 231–233 (1962). [CrossRef]
  7. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006). [CrossRef] [PubMed]
  8. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  9. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  10. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010). [CrossRef] [PubMed]
  11. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  12. E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” JLT 25, 2547–2562 (2007).
  13. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  14. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  15. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett. 101(16), 163902 (2008). [CrossRef] [PubMed]
  16. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef] [PubMed]
  17. E. Feigenbaum, N. Kaminski, and M. Orenstein, “Negative dispersion: a backward wave or fast light? Nanoplasmonic examples,” Opt. Express 17(21), 18934–18939 (2009). [CrossRef]
  18. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67(3), 035109 (2003). [CrossRef]
  19. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  20. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  21. T. Tamir and A. A. Oliner, “The Spectrum of Electromagnetic Waves Guided by a Plasma Layer,” Proc. IEEE 51(2), 317–332 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3662 KB)     
» Media 2: MPG (4009 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited