OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25906–25911

Magnetic field concentrator for probing optical magnetic metamaterials

Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25906-25911 (2010)
http://dx.doi.org/10.1364/OE.18.025906


View Full Text Article

Enhanced HTML    Acrobat PDF (1962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3820) Materials : Magneto-optical materials
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Microscopy

History
Original Manuscript: October 27, 2010
Revised Manuscript: November 23, 2010
Manuscript Accepted: November 23, 2010
Published: November 25, 2010

Citation
Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik, "Magnetic field concentrator for probing optical magnetic metamaterials," Opt. Express 18, 25906-25911 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Evans, "A new type of magnetic balance," J. Phys. E Sci. Instrum. 7, 247 (1974). [CrossRef]
  2. M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001). [CrossRef] [PubMed]
  3. T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-380 (2008). [CrossRef] [PubMed]
  5. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett. 34, 3478-3480 (2009). [CrossRef] [PubMed]
  6. J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  7. A. Ishikawa, T. Tanaka, and S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95, 237401 (2005). [CrossRef] [PubMed]
  8. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]
  9. J. Schuller, R. Zia, T. Tauber, and M. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  10. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett. 101, 027402 (2008). [CrossRef] [PubMed]
  11. B. Popa, and S. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett. 100, 207401 (2008). [CrossRef] [PubMed]
  12. K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, "All-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009). [CrossRef] [PubMed]
  13. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, "Tunable response of metamaterials," Appl. Phys. Lett. 95, 033115 (2009). [CrossRef]
  14. N. Mirin, T. Ali, P. Nordlander, and N. Halas, "Perforated semishells: far-field directional control and optical frequency magnetic response," ACS Nano 4, 2701-2712 (2010). [CrossRef] [PubMed]
  15. Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, "Magnetic metamaterials in the blue range using aluminum nanostructures," Opt. Lett. 35, 1656-1658 (2010). [CrossRef] [PubMed]
  16. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tünnermann, F. Lederer, and T. Pertsch, "Understanding the electric and magnetic response of isolated meta atoms by means of a multipolar field decomposition," Opt. Express 18, 14454-14466 (2010). [CrossRef] [PubMed]
  17. R. Merlin, "Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high frequency magnetism," Proc. Natl. Acad. Sci. U.S.A. 106, 1693-1698 (2009). [CrossRef] [PubMed]
  18. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, "Probing the magnetic field of light at optical frequencies," Science 326, 550-553 (2009). [CrossRef] [PubMed]
  19. M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, "Magnetic light-matter intersactions in a photonic crystal nanocavity," Phys. Rev. Lett. 105, 123901 (2010). [CrossRef] [PubMed]
  20. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, "Magnetic imaging in photonic crystal microcavities," Phys. Rev. Lett. 105, 123902 (2010). [CrossRef] [PubMed]
  21. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Adv. Opt. Photon. 1, 1-57 (2009). [CrossRef]
  22. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, "On the experimental investigation of the electric and magnetic response of a single nano-structure," Opt. Express 18, 10905-10923 (2010). [CrossRef] [PubMed]
  23. T. Antosiewicz, and T. Szoplik, "Corrugated metal-coated tapered tip for scanning near-field optical microscope," Opt. Express 15, 10920-10928 (2007). [CrossRef] [PubMed]
  24. T. Antosiewicz, and T. Szoplik, "Corrugated SNOM probe with enhanced energy throughput," Opto-Electron. Rev. 16, 451-457 (2008). [CrossRef]
  25. T. Antosiewicz, P. Wróbel, and T. Szoplik, "Performance of scanning near-field optical microscope probes with single groove and various metal coatings," Plasmonics pp. DOI: 10.1007/s11468-010-9163-6 (2010). [CrossRef]
  26. P. Johnson, and R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  27. S. Bozhevolnyi, and K. Nerkararyan, "Adiabatic nanofocusing of channel plasmon polaritons," Opt. Lett. 35, 541-543 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited