OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25912–25921

Compact electric-LC resonators for metamaterials

Withawat Withayachumnankul, Christophe Fumeaux, and Derek Abbott  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25912-25921 (2010)
http://dx.doi.org/10.1364/OE.18.025912


View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Alternative designs to an electric-LC (ELC) resonator, which is a type of metamaterial inclusion, are presented in this article. Fitting the resonator with an interdigital capacitor (IDC) helps to increase the total capacitance of the structure. In effect, its resonance frequency is shifted downwards. This implies a decreased overall resonator size with respect to its operating wavelength. As a result, the metamaterial, composed of an array of IDC-loaded ELC resonators with their collective electromagnetic response, possesses improved homogeneity and hence is less influenced by diffraction effects of individual cells. The impact of incorporating an IDC into ELC resonators in terms of the electrical size at resonance and other relevant properties are investigated through both simulation and experiment in the microwave regime. The proposed structures can be applied to the terahertz regime via appropriate lithographic scaling.

© 2010 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: September 23, 2010
Revised Manuscript: November 3, 2010
Manuscript Accepted: November 23, 2010
Published: November 26, 2010

Citation
Withawat Withayachumnankul, Christophe Fumeaux, and Derek Abbott, "Compact electric-LC resonators for metamaterials," Opt. Express 18, 25912-25921 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  6. N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. Kivshar, "Ideal and nonideal invisibility cloaks," Opt. Express 16, 21369-21374 (2008). [CrossRef] [PubMed]
  7. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B Condens. Matter 71, 245105 (2005). [CrossRef]
  8. C. Caloz, A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," N. J. Phys. 7, 167 (2005). [CrossRef]
  9. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  10. M. M. Lapine, and S. Tretyakov, "Contemporary notes on metamaterials," IET Microwaves Antennas Propag. 1, 3-11 (2007). [CrossRef]
  11. D. Rialet, A. Sharaiha, A.-C. Tarot, and C. Delaveaud, "Characterization of antennas on dielectric and magnetic substrates effective medium approximation," in "Third European Conference on Antennas and Propagation (EuCAP)," (2009), pp. 3163-3166.
  12. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," N. J. Phys. 7, 168 (2005). [CrossRef]
  13. K. Aydin, and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007). [CrossRef]
  14. F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antenn. Propag. 55, 2258-2267 (2007). [CrossRef]
  15. J. D. Baena, R. Marqués, and F. Medina, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B Condens. Matter 69, 014402 (2004). [CrossRef]
  16. E. Lenz, and H. Henke, "Homogenization of metamaterials due to fractaloid structures in the microwave regime," J. Opt. A, Pure Appl. Opt. 11, 114021 (2009). [CrossRef]
  17. H. Chen, L. Ran, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress in Electromagnetics Research 66, 179-190 (2006). [CrossRef]
  18. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  19. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B Condens. Matter 75, 041102 (2007). [CrossRef]
  20. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines (Artech House, 1996), 2nd ed.
  21. G. Houzet, X. Melique, and D. Lippens, "Microstrip transmission line loaded by split-ring resonators tuned by ferroelectric thin film," Progress in Electromagnetics Research 12, 225-236 (2010). [CrossRef]
  22. C. Caloz, and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antenn. Propag. 52, 1159-1166 (2004). [CrossRef]
  23. A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave Wireless Compon. Lett. 14, 68-70 (2004). [CrossRef]
  24. I. J. Bahl, Lumped Element for RF and Microwave Circuits (Artech House, 2003).
  25. G. D. Alley, "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Trans. Microw. Theory Tech. MTT-18, 1028-1033 (1970). [CrossRef]
  26. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004). [CrossRef]
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005). [CrossRef]
  28. J. Zhang, and Z. R. Hu, "A novel broadband metamaterial resonator with negative permittivity," in "PIERS Proceedings, Xi’an, China," (2010), pp. 1346-1348.
  29. H. A. Wheeler, "Fundamental limits of small antennas," Proc. IRE. 35, 1479-1484 (1947). [CrossRef]
  30. L. J. Chu, "Physical limitations of omni-directional antennas," J. Appl. Phys. 19, 1163-1175 (1948). [CrossRef]
  31. R. F. Harrington, "Effect of antenna size on gain, bandwidth, and efficiency," J. Research National Bureau of Standards—D. Radio Propagation 64D (1960). [PubMed]
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  33. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004). [CrossRef]
  34. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer," Appl. Phys. Express, art. no. 016701 (2010). [CrossRef]
  35. W. Withayachumnankul, and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics J. 1, 99-118 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited