OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25922–25927

Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers

Christian Jirauschek  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25922-25927 (2010)
http://dx.doi.org/10.1364/OE.18.025922


View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on a coupled simulation of carrier transport and optical cavity field, the intrinsic linewidth in resonant phonon terahertz quantum cascade lasers is self-consistently analyzed. For high power structures, values on the order of Hz are obtained. Thermal photons are found to play a considerable role at elevated temperatures. A linewidth enhancement factor of 0.5 is calculated for the investigated designs.

© 2010 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3430) Lasers and laser optics : Laser theory
(300.3700) Spectroscopy : Linewidth
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 12, 2010
Revised Manuscript: November 22, 2010
Manuscript Accepted: November 23, 2010
Published: November 26, 2010

Citation
Christian Jirauschek, "Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers," Opt. Express 18, 25922-25927 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89-90 (2006). [CrossRef]
  2. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides," Opt. Lett. 32, 2840-2842 (2007). [CrossRef]
  3. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, "Theory of the intrinsic linewidth of quantum cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons," IEEE J. Quantum Electron. 44, 12-29 (2008). [CrossRef]
  4. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. de Natale, "Observing the intrinsic linewidth of a quantum-cascade laser: Beyond the Schawlow-Townes limit," Phys. Rev. Lett. 104, 083904 (2010). [CrossRef]
  5. A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie, "Linewidth and tuning characteristics of terahertz quantum cascade lasers," Opt. Lett. 29, 575-577 (2004). [CrossRef] [PubMed]
  6. H. Hubers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, "Terahertz quantum cascade laser as local oscillator in a heterodyne receiver," Opt. Express 13, 5890-5896 (2005). [CrossRef] [PubMed]
  7. A. Baryshev, J. N. Hovenier, A. J. L. Adam, I. Kasalynas, J. R. Gao, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser," Appl. Phys. Lett. 89, 031115 (2006). [CrossRef]
  8. A. A. Danylov, T. M. Goyette, J. Waldman, M. J. Coulombe, A. J. Gatesman, R. H. Giles, W. D. Goodhue, X. Qian, and W. E. Nixon, "Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level," Opt. Express 17, 7525-7532 (2009). [CrossRef] [PubMed]
  9. D. Rabanus, U. U. Graf, M. Philipp, O. Ricken, J. Stutzki, B. Vowinkel, M. C. Wiedner, C. Walther, M. Fischer, and J. Faist, "Phase locking of a 15 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver," Opt. Express 17, 1159-1168 (2009). [CrossRef] [PubMed]
  10. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, "Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser," Nat. Photonics 4, 636-640 (2010). [CrossRef]
  11. C. Jirauschek, "Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers," Appl. Phys. Lett. 96, 011103 (2010). [CrossRef]
  12. C. Jirauschek, "Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation," IEEE J. Quantum Electron. 45, 1059-1067 (2009). [CrossRef]
  13. C. Jirauschek, and P. Lugli, "Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers," J. Appl. Phys. 105, 123102 (2009). [CrossRef]
  14. C. Jirauschek, A. Matyas, and P. Lugli, "Modeling bound-to-continuum terahertz quantum cascade lasers: The role of Coulomb interactions," J. Appl. Phys. 107, 013104 (2010). [CrossRef]
  15. G. Grau, and W. Freude, Optische Nachrichtentechnik - Eine Einführung (Springer, 1991).
  16. H. Haug, and H. Haken, "Theory of noise in semiconductor laser emission," Z. Phys. 204, 262-275 (1967). [CrossRef]
  17. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005). [CrossRef] [PubMed]
  18. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  19. C. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  20. R. P. Green, J. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, "Linewidth enhancement factor of terahertz quantum cascade lasers," Appl. Phys. Lett. 92, 071106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited